ﻻ يوجد ملخص باللغة العربية
The partial differential equations describing compressible fluid flows can be notoriously difficult to resolve on a pragmatic scale and often require the use of high performance computing systems and/or accelerators. However, these systems face scaling issues such as latency, the fixed cost of communicating information between devices in the system. The swept rule is a technique designed to minimize these costs by obtaining a solution to unsteady equations at as many possible spatial locations and times prior to communicating. In this study, we implemented and tested the swept rule for solving two-dimensional problems on heterogeneous computing systems across two distinct systems. Our solver showed a speedup range of 0.22-2.71 for the heat diffusion equation and 0.52-1.46 for the compressible Euler equations. We can conclude from this study that the swept rule offers both potential for speedups and slowdowns and that care should be taken when designing such a solver to maximize benefits. These results can help make decisions to maximize these benefits and inform designs.
Applications that exploit the architectural details of high-performance computing (HPC) systems have become increasingly invaluable in academia and industry over the past two decades. The most important hardware development of the last decade in HPC
While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring standard as well as
We present a novel implementation of the modal discontinuous Galerkin (DG) method for hyperbolic conservation laws in two dimensions on graphics processing units (GPUs) using NVIDIAs Compute Unified Device Architecture (CUDA). Both flexible and highl
In one of the most important methods in Density Functional Theory - the Full-Potential Linearized Augmented Plane Wave (FLAPW) method - dense generalized eigenproblems are organized in long sequences. Moreover each eigenproblem is strongly correlated
Many applications from geosciences require simulations of seismic waves in porous media. Biots theory of poroelasticity describes the coupling between solid and fluid phases and introduces a stiff source term, thereby increasing computational cost an