ﻻ يوجد ملخص باللغة العربية
We present a novel implementation of the modal discontinuous Galerkin (DG) method for hyperbolic conservation laws in two dimensions on graphics processing units (GPUs) using NVIDIAs Compute Unified Device Architecture (CUDA). Both flexible and highly accurate, DG methods accommodate parallel architectures well as their discontinuous nature produces element-local approximations. High performance scientific computing suits GPUs well, as these powerful, massively parallel, cost-effective devices have recently included support for double-precision floating point numbers. Computed examples for Euler equations over unstructured triangle meshes demonstrate the effectiveness of our implementation on an NVIDIA GTX 580 device. Profiling of our method reveals performance comparable to an existing nodal DG-GPU implementation for linear problems.
The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin method with a {delta}-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasti
A moving mesh discontinuous Galerkin method is presented for the numerical solution of hyperbolic conservation laws. The method is a combination of the discontinuous Galerkin method and the mesh movement strategy which is based on the moving mesh par
In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the rela
Motivated by considering partial differential equations arising from conservation laws posed on evolving surfaces, a new numerical method for an advection problem is developed and simple numerical tests are performed. The method is based on an unfitt
The investigation of samples with a spatial resolution in the nanometer range relies on the precise and stable positioning of the sample. Due to inherent mechanical instabilities of typical sample stages in optical microscopes, it is usually required