ترغب بنشر مسار تعليمي؟ اضغط هنا

On the use of feature-maps and parameter control for improved quality-diversity meta-evolution

305   0   0.0 ( 0 )
 نشر من قبل David Mark Bossens
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In Quality-Diversity (QD) algorithms, which evolve a behaviourally diverse archive of high-performing solutions, the behaviour space is a difficult design choice that should be tailored to the target application. In QD meta-evolution, one evolves a population of QD algorithms to optimise the behaviour space based on an archive-level objective, the meta-fitness. This paper proposes an improved meta-evolution system such that (i) the database used to rapidly populate new archives is reformulated to prevent loss of quality-diversity; (ii) the linear transformation of base-features is generalised to a feature-map, a function of the base-features parametrised by the meta-genotype; and (iii) the mutation rate of the QD algorithm and the number of generations per meta-generation are controlled dynamically. Experiments on an 8-joint planar robot arm compare feature-maps (linear, non-linear, and feature-selection), parameter control strategies (static, endogenous, reinforcement learning, and annealing), and traditional MAP-Elites variants, for a total of 49 experimental conditions. Results reveal that non-linear and feature-selection feature-maps yield a 15-fold and 3-fold improvement in meta-fitness, respectively, over linear feature-maps. Reinforcement learning ranks among top parameter control methods. Finally, our approach allows the robot arm to recover a reach of over 80% for most damages and at least 60% for severe damages.



قيم البحث

اقرأ أيضاً

Quality-Diversity (QD) algorithms evolve behaviourally diverse and high-performing solutions. To illuminate the elite solutions for a space of behaviours, QD algorithms require the definition of a suitable behaviour space. If the behaviour space is h igh-dimensional, a suitable dimensionality reduction technique is required to maintain a limited number of behavioural niches. While current methodologies for automated behaviour spaces focus on changing the geometry or on unsupervised learning, there remains a need for customising behavioural diversity to a particular meta-objective specified by the end-user. In the newly emerging framework of QD Meta-Evolution, or QD-Meta for short, one evolves a population of QD algorithms, each with different algorithmic and representational characteristics, to optimise the algorithms and their resulting archives to a user-defined meta-objective. Despite promising results compared to traditional QD algorithms, QD-Meta has yet to be compared to state-of-the-art behaviour space automation methods such as Centroidal Voronoi Tessellations Multi-dimensional Archive of Phenotypic Elites Algorithm (CVT-MAP-Elites) and Autonomous Robots Realising their Abilities (AURORA). This paper performs an empirical study of QD-Meta on function optimisation and multilegged robot locomotion benchmarks. Results demonstrate that QD-Meta archives provide improved average performance and faster adaptation to a priori unknown changes to the environment when compared to CVT-MAP-Elites and AURORA. A qualitative analysis shows how the resulting archives are tailored to the meta-objectives provided by the end-user.
Quality-Diversity algorithms refer to a class of evolutionary algorithms designed to find a collection of diverse and high-performing solutions to a given problem. In robotics, such algorithms can be used for generating a collection of controllers co vering most of the possible behaviours of a robot. To do so, these algorithms associate a behavioural descriptor to each of these behaviours. Each behavioural descriptor is used for estimating the novelty of one behaviour compared to the others. In most existing algorithms, the behavioural descriptor needs to be hand-coded, thus requiring prior knowledge about the task to solve. In this paper, we introduce: Autonomous Robots Realising their Abilities, an algorithm that uses a dimensionality reduction technique to automatically learn behavioural descriptors based on raw sensory data. The performance of this algorithm is assessed on three robotic tasks in simulation. The experimental results show that it performs similarly to traditional hand-coded approaches without the requirement to provide any hand-coded behavioural descriptor. In the collection of diverse and high-performing solutions, it also manages to find behaviours that are novel with respect to more features than its hand-coded baselines. Finally, we introduce a variant of the algorithm which is robust to the dimensionality of the behavioural descriptor space.
Quality Diversity (QD) algorithms are a recent family of optimization algorithms that search for a large set of diverse but high-performing solutions. In some specific situations, they can solve multiple tasks at once. For instance, they can find the joint positions required for a robotic arm to reach a set of points, which can also be solved by running a classic optimizer for each target point. However, they cannot solve multiple tasks when the fitness needs to be evaluated independently for each task (e.g., optimizing policies to grasp many different objects). In this paper, we propose an extension of the MAP-Elites algorithm, called Multi-task MAP-Elites, that solves multiple tasks when the fitness function depends on the task. We evaluate it on a simulated parameterized planar arm (10-dimensional search space; 5000 tasks) and on a simulated 6-legged robot with legs of different lengths (36-dimensional search space; 2000 tasks). The results show that in both cases our algorithm outperforms the optimization of each task separately with the CMA-ES algorithm.
We present an online multi-task learning approach for adaptive nonlinear control, which we call Online Meta-Adaptive Control (OMAC). The goal is to control a nonlinear system subject to adversarial disturbance and unknown $textit{environment-dependen t}$ nonlinear dynamics, under the assumption that the environment-dependent dynamics can be well captured with some shared representation. Our approach is motivated by robot control, where a robotic system encounters a sequence of new environmental conditions that it must quickly adapt to. A key emphasis is to integrate online representation learning with established methods from control theory, in order to arrive at a unified framework that yields both control-theoretic and learning-theoretic guarantees. We provide instantiations of our approach under varying conditions, leading to the first non-asymptotic end-to-end convergence guarantee for multi-task adaptive nonlinear control. OMAC can also be integrated with deep representation learning. Experiments show that OMAC significantly outperforms conventional adaptive control approaches which do not learn the shared representation.
Neuroevolution is a process of training neural networks (NN) through an evolutionary algorithm, usually to serve as a state-to-action mapping model in control or reinforcement learning-type problems. This paper builds on the Neuro Evolution of Augmen ted Topologies (NEAT) formalism that allows designing topology and weight evolving NNs. Fundamental advancements are made to the neuroevolution process to address premature stagnation and convergence issues, central among which is the incorporation of automated mechanisms to control the population diversity and average fitness improvement within the neuroevolution process. Insights into the performance and efficiency of the new algorithm is obtained by evaluating it on three benchmark problems from the Open AI platform and an Unmanned Aerial Vehicle (UAV) collision avoidance problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا