ﻻ يوجد ملخص باللغة العربية
Advanced persistent threats (APT) are stealthy cyber-attacks that are aimed at stealing valuable information from target organizations and tend to extend in time. Blocking all APTs is impossible, security experts caution, hence the importance of research on early detection and damage limitation. Whole-system provenance-tracking and provenance trace mining are considered promising as they can help find causal relationships between activities and flag suspicious event sequences as they occur. We introduce an unsupervised method that exploits OS-independent features reflecting process activity to detect realistic APT-like attacks from provenance traces. Anomalous processes are ranked using both frequent and rare event associations learned from traces. Results are then presented as implications which, since interpretable, help leverage causality in explaining the detected anomalies. When evaluated on Transparent Computing program datasets (DARPA), our method outperformed competing approaches.
Advanced Persistent Threats (APTs) are difficult to detect due to their low-and-slow attack patterns and frequent use of zero-day exploits. We present UNICORN, an anomaly-based APT detector that effectively leverages data provenance analysis. From mo
Advanced persistent threats (APT) are stealthy, sophisticated, and unpredictable cyberattacks that can steal intellectual property, damage critical infrastructure, or cause millions of dollars in damage. Detecting APTs by monitoring system-level acti
Advanced Persistent Threats (APTs) are stealthy customized attacks by intelligent adversaries. This paper deals with the detection of APTs that infiltrate cyber systems and compromise specifically targeted data and/or infrastructures. Dynamic informa
Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation. The exponential expansion in the deployment of cloud technology has produced a massive amount of data from a variety of applica
The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the comple