ﻻ يوجد ملخص باللغة العربية
Using {it ab initio} density functional theory, here we systematically study the monolayer MoOCl$_2$ with a $4d^2$ electronic configuration. Our main results is that an orbital-selective Peierls phase (OSPP) develops in MoOCl$_2$, resulting in the dimerization of the Mo chain along the $b$-axis. Specifically, the Mo-$d_{xy}$ orbitals form robust molecular-orbital states inducing localized $d_{xy}$ singlet dimers, while the Mo-$d_{xz/yz}$ orbitals remain delocalized and itinerant. Our study shows that MoOCl$_2$ is globally metallic, with the Mo-$d_{xy}$ orbital bonding-antibonding splittings opening a gap and the Mo-$d_{xz/yz}$ orbitals contributing to the metallic conductivity. Overall, the results resemble the recently much discussed orbital-selective Mott phase but with the localized band induced by a Peierls distortion instead of Hubbard interactions. Finally, we also qualitatively discuss the possibility of OSPP in the $3d^2$ configuration, as in CrOCl$_2$.
We extend previous analytical studies of the ground-state phase diagram of a one-dimensional Heisenberg spin chain coupled to optical phonons, which for increasing spin-lattice coupling undergoes a quantum phase transition from a gap-less to a gaped
Starting from a spin-orbital model for doped manganites, we investigate a competition between ferromagnetic and antiferromagnetic order in a one-dimensional model at finite temperature. The magnetic and orbital order at half filling support each othe
In heavy-fermion compounds, the dual character of $f$ electrons underlies their rich and often exotic properties like fragile heavy quasipartilces, variety of magnetic orders and unconventional superconductivity. 5$f$-electron actinide materials prov
Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one dimension revealed
We have investigated the low-temperature magnetism of sodium superoxide (NaO$_{2}$), in which spin, orbital, and lattice degrees of freedom are closely entangled. The magnetic susceptibility shows anomalies at $T_{1}=220$ K and $T_{2}=190$ K, which c