ﻻ يوجد ملخص باللغة العربية
In this paper we deal with positive singular solutions to semilinear elliptic problems involving a first order term and a singular nonlinearity. Exploiting a fine adaptation of the well-known moving plane method of Alexandrov-Serrin and a careful choice of the cutoff functions, we deduce symmetry and monotonicity properties of the solutions.
In this paper we obtain symmetry and monotonicity results for positive solutions to some $p$-Laplacian cooperative systems in bounded domains involving first order terms and under zero Dirichlet boundary condition.
Our goal in this article is to study the global Lorentz estimates for gradient of weak solutions to $p$-Laplace double obstacle problems involving the Schrodinger term: $-Delta_p u + mathbb{V}|u|^{p-2}u$ with bound constraints $psi_1 le u le psi_2$ i
In this note we establish existence and uniqueness of weak solutions of linear elliptic equation $text{div}[mathbf{A}(x) abla u] = text{div}{mathbf{F}(x)}$, where the matrix $mathbf{A}$ is just measurable and its skew-symmetric part can be unbounded
The existence and multiplicity of solutions for a class of non-local elliptic boundary value problems with superlinear source functions are investigated in this paper. Using variational methods, we examine the changes arise in the solution behaviours
Within the framework of variational modelling we derive a one-phase moving boundary problem describing the motion of a semipermeable membrane enclosing a viscous liquid, driven by osmotic pressure and surface tension of the membrane. For this problem