ﻻ يوجد ملخص باللغة العربية
Neuronal ensemble inference is a significant problem in the study of biological neural networks. Various methods have been proposed for ensemble inference from experimental data of neuronal activity. Among them, Bayesian inference approach with generative model was proposed recently. However, this method requires large computational cost for appropriate inference. In this work, we give an improved Bayesian inference algorithm by modifying update rule in Markov chain Monte Carlo method and introducing the idea of simulated annealing for hyperparameter control. We compare the performance of ensemble inference between our algorithm and the original one, and discuss the advantage of our method.
Generalized linear models are one of the most efficient paradigms for predicting the correlated stochastic activity of neuronal networks in response to external stimuli, with applications in many brain areas. However, when dealing with complex stimul
We investigate the dynamics of two models of biological networks with purely suppressive interactions between the units; species interacting via niche competition and neurons via inhibitory synaptic coupling. In both of these cases, power-law scaling
Neural networks are able to extract information from the timing of spikes. Here we provide new results on the behavior of the simplest neuronal model which is able to decode information embedded in temporal spike patterns, the so called tempotron. Us
Recent advances in deep learning and neural networks have led to an increased interest in the application of generative models in statistical and condensed matter physics. In particular, restricted Boltzmann machines (RBMs) and variational autoencode
In this paper, we introduce efficient ensemble Markov Chain Monte Carlo (MCMC) sampling methods for Bayesian computations in the univariate stochastic volatility model. We compare the performance of our ensemble MCMC methods with an improved version