ترغب بنشر مسار تعليمي؟ اضغط هنا

Negational Symmetry of Quantum Neural Networks for Binary Pattern Classification

111   0   0.0 ( 0 )
 نشر من قبل Nanqing Dong
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement is a physical phenomenon, which has fueled recent successes of quantum algorithms. Although quantum neural networks (QNNs) have shown promising results in solving simple machine learning tasks recently, for the time being, the effect of entanglement in QNNs and the behavior of QNNs in binary pattern classification are still underexplored. In this work, we provide some theoretical insight into the properties of QNNs by presenting and analyzing a new form of invariance embedded in QNNs for both quantum binary classification and quantum representation learning, which we term negational symmetry. Given a quantum binary signal and its negational counterpart where a bitwise NOT operation is applied to each quantum bit of the binary signal, a QNN outputs the same logits. That is to say, QNNs cannot differentiate a quantum binary signal and its negational counterpart in a binary classification task. We further empirically evaluate the negational symmetry of QNNs in binary pattern classification tasks using Googles quantum computing framework. The theoretical and experimental results suggest that negational symmetry is a fundamental property of QNNs, which is not shared by classical models. Our findings also imply that negational symmetry is a double-edged sword in practical quantum applications.



قيم البحث

اقرأ أيضاً

Deep neural networks have been exhibiting splendid accuracies in many of visual pattern classification problems. Many of the state-of-the-art methods employ a technique known as data augmentation at the training stage. This paper addresses an issue o f decision rule for classifiers trained with augmented data. Our method is named as APAC: the Augmented PAttern Classification, which is a way of classification using the optimal decision rule for augmented data learning. Discussion of methods of data augmentation is not our primary focus. We show clear evidences that APAC gives far better generalization performance than the traditional way of class prediction in several experiments. Our convolutional neural network model with APAC achieved a state-of-the-art accuracy on the MNIST dataset among non-ensemble classifiers. Even our multilayer perceptron model beats some of the convolutional models with recently invented stochastic regularization techniques on the CIFAR-10 dataset.
Convolutional neural networks have achieved astonishing results in different application areas. Various methods that allow us to use these models on mobile and embedded devices have been proposed. Especially binary neural networks are a promising app roach for devices with low computational power. However, training accurate binary models from scratch remains a challenge. Previous work often uses prior knowledge from full-precision models and complex training strategies. In our work, we focus on increasing the performance of binary neural networks without such prior knowledge and a much simpler training strategy. In our experiments we show that we are able to achieve state-of-the-art results on standard benchmark datasets. Further, to the best of our knowledge, we are the first to successfully adopt a network architecture with dense connections for binary networks, which lets us improve the state-of-the-art even further.
Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification, leveraging the information from neighboring nodes to improve the representation learning of target node. The success of GNNs at node classific ation depends on the assumption that connected nodes tend to have the same label. However, such an assumption does not always work, limiting the performance of GNNs at node classification. In this paper, we propose label-consistency based graph neural network(LC-GNN), leveraging node pairs unconnected but with the same labels to enlarge the receptive field of nodes in GNNs. Experiments on benchmark datasets demonstrate the proposed LC-GNN outperforms traditional GNNs in graph-based semi-supervised node classification.We further show the superiority of LC-GNN in sparse scenarios with only a handful of labeled nodes.
Steady-State Visual Evoked Potentials (SSVEPs) are neural oscillations from the parietal and occipital regions of the brain that are evoked from flickering visual stimuli. SSVEPs are robust signals measurable in the electroencephalogram (EEG) and are commonly used in brain-computer interfaces (BCIs). However, methods for high-accuracy decoding of SSVEPs usually require hand-crafted approaches that leverage domain-specific knowledge of the stimulus signals, such as specific temporal frequencies in the visual stimuli and their relative spatial arrangement. When this knowledge is unavailable, such as when SSVEP signals are acquired asynchronously, such approaches tend to fail. In this paper, we show how a compact convolutional neural network (Compact-CNN), which only requires raw EEG signals for automatic feature extraction, can be used to decode signals from a 12-class SSVEP dataset without the need for any domain-specific knowledge or calibration data. We report across subject mean accuracy of approximately 80% (chance being 8.3%) and show this is substantially better than current state-of-the-art hand-crafted approaches using canonical correlation analysis (CCA) and Combined-CCA. Furthermore, we analyze our Compact-CNN to examine the underlying feature representation, discovering that the deep learner extracts additional phase and amplitude related features associated with the structure of the dataset. We discuss how our Compact-CNN shows promise for BCI applications that allow users to freely gaze/attend to any stimulus at any time (e.g., asynchronous BCI) as well as provides a method for analyzing SSVEP signals in a way that might augment our understanding about the basic processing in the visual cortex.
We propose two deep neural network architectures for classification of arbitrary-length electrocardiogram (ECG) recordings and evaluate them on the atrial fibrillation (AF) classification data set provided by the PhysioNet/CinC Challenge 2017. The fi rst architecture is a deep convolutional neural network (CNN) with averaging-based feature aggregation across time. The second architecture combines convolutional layers for feature extraction with long-short term memory (LSTM) layers for temporal aggregation of features. As a key ingredient of our training procedure we introduce a simple data augmentation scheme for ECG data and demonstrate its effectiveness in the AF classification task at hand. The second architecture was found to outperform the first one, obtaining an $F_1$ score of $82.1$% on the hidden challenge testing set.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا