ﻻ يوجد ملخص باللغة العربية
We obtain the complete and independent bases of effective operators at mass dimension 5, 6, 7, 8, 9 in both standard model effective field theory with light sterile right-handed neutrinos ($ u$SMEFT) and low energy effective field theory with light sterile neutrinos ($ u$LEFT). These theories provide systematical parametrizations on all possible Lorentz-invariant physical effects involving in the Majorana/Dirac neutrinos, with/without the lepton number violations. In the $ u$SMEFT, we find that there are 2 (18), 29 (1614), 80 (4206), 323 (20400), 1358 (243944) independent operators with sterile neutrinos included at the dimension 5, 6, 7, 8, 9 for one (three) generation of fermions, while 24, 5223, 3966, 25425, 789426 independent operators in the $ u$LEFT.
We obtain the complete operator bases at mass dimensions 5, 6, 7, 8, 9 for the low energy effective field theory (LEFT), which parametrize various physics effects between the QCD scale and the electroweak scale. The independence of the operator basis
We investigate neutrinoless double beta decay ($0 ubetabeta$) in the presence of sterile neutrinos with Majorana mass terms. These gauge-singlet fields are allowed to interact with Standard-Model (SM) fields via renormalizable Yukawa couplings as wel
We revisit the effective field theory of the standard model that is extended with sterile neutrinos, $N$. We examine the basis of complete and independent effective operators involving $N$ up to mass dimension seven (dim-7). By employing equations of
Neutrinos, being the only fermions in the Standard Model of Particle Physics that do not possess electromagnetic or color charges, have the unique opportunity to communicate with fermions outside the Standard Model through mass mixing. Such Standard
Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe t