ترغب بنشر مسار تعليمي؟ اضغط هنا

Sterile neutrinos in cosmology

68   0   0.0 ( 0 )
 نشر من قبل Kevork Abazajian
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe to the matter and radiation energy density today. Here, we review the cosmological role such light sterile neutrinos can play from the early Universe, including production of keV-scale sterile neutrinos as dark matter candidates, and dynamics of light eV-scale sterile neutrinos during the weakly-coupled active neutrino era. We review proposed signatures of light sterile neutrinos in cosmic microwave background and large scale structure data. We also discuss keV-scale sterile neutrino dark matter decay signatures in X-ray observations, including recent candidate $sim$3.5 keV X-ray line detections consistent with the decay of a $sim$7 keV sterile neutrino dark matter particle.



قيم البحث

اقرأ أيضاً

Neutrinos, being the only fermions in the Standard Model of Particle Physics that do not possess electromagnetic or color charges, have the unique opportunity to communicate with fermions outside the Standard Model through mass mixing. Such Standard Model-singlet fermions are generally referred to as sterile neutrinos. In this review article, we discuss the theoretical and experimental motivation for sterile neutrinos, as well as their phenomenological consequences. With the benefit of hindsight in 2020, we point out potentially viable and interesting ideas. We focus in particular on sterile neutrinos that are light enough to participate in neutrino oscillations, but we also comment on the benefits of introducing heavier sterile states. We discuss the phenomenology of eV-scale sterile neutrinos in terrestrial experiments and in cosmology, we survey the global data, and we highlight various intriguing anomalies. We also expose the severe tension that exists between different data sets and prevents a consistent interpretation of the global data in at least the simplest sterile neutrino models. We discuss non-minimal scenarios that may alleviate some of this tension. We briefly review the status of keV-scale sterile neutrinos as dark matter and the possibility of explaining the matter-antimatter asymmetry of the Universe through leptogenesis driven by yet heavier sterile neutrinos.
We investigate how hypothetical particles - sterile neutrinos - can be produced in the interior of exploding supernovae via the resonant conversion of $bar u_mu$ and $bar u_tau$. The novelty of our treatment lies in the proper account of the resulti ng lepton number diffusion. We compute the yield of sterile neutrinos and find that even after taking into account back reaction, sterile neutrinos can carry out a sizeable fraction of the total energy of the explosion comparable to that of active neutrinos. The production is, however, exponentially sensitive to the temperature in the inner supernovae regions, making robust predictions of challenging. In order to understand whether this production affects supernova evolution and can therefore be constrained, detailed simulations including the effects of sterile neutrinos are needed.
We briefly review the recent developments in neutrino physics and astrophysics which have import for frontline research in nuclear physics. These developments, we argue, tie nuclear physics to exciting developments in observational cosmology and astr ophysics in new ways. Moreover, the behavior of neutrinos in dense matter is itself a fundamental problem in many-body quantum mechanics, in some ways akin to well-known issues in nuclear matter and nuclei, and in some ways radically different, especially because of nonlinearity and quantum de-coherence. The self-interacting neutrino gas is the only many body system driven by the weak interactions.
We explore the complementarity between terrestrial neutrino oscillation experiments and astrophysical/cosmological measurements in probing the existence of sterile neutrinos. We find that upcoming accelerator neutrino experiments will not improve on constraints by the time they are operational, but that reactor experiments can already probe parameter space beyond the reach of Planck. We emphasize the tension between cosmological experiments and reactor antineutrino experiments and enumerate several possibilities for resolving this tension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا