ﻻ يوجد ملخص باللغة العربية
We study the dynamics of a ferrofluid thin film confined in a Hele-Shaw cell, and subjected to a tilted nonuniform magnetic field. It is shown that the interface between the ferrofluid and an inviscid outer fluid (air) supports traveling waves, governed by a novel modified Kuramoto--Sivashinsky-type equation derived under the long-wave approximation. The balance between energy production and dissipation in this long-wave equations allows for the existence of dissipative solitons. These permanent traveling waves propagation velocity and profile shape are shown to be tunable via the external magnetic field. A multiple-scale analysis is performed to obtain the correction to the linear prediction of the propagation velocity, and to reveal how the nonlinearity arrests the linear instability. The traveling periodic interfacial waves discovered are identified as fixed points in an energy phase plane. It is shown that transitions between states (wave profiles) occur. These transitions are explained via the spectral stability of the traveling waves. Interestingly, multiperiodic waves, which are a non-integrable analog of the double cnoidal wave, also found to propagate under the model long-wave equation. These multiperiodic solutions are investigated numerically, and they are found to be long-lived transients, but ultimately abruptly transition to one of the stable periodic states identified above.
We consider the long-time evolution of pulses in the Korteweg-de Vries equation theory for initial distributions which produce no soliton, but instead lead to the formation of a dispersive shock wave and of a rarefaction wave. An approach based on Wh
Soliton and breather solutions of the nonlinear Schrodinger equation (NLSE) are known to model localized structures in nonlinear dispersive media such as on the water surface. One of the conditions for an accurate propagation of such exact solutions
The dynamics of initially truncated and bent line solitons for the Kadomtsev-Petviashvili (KPII) equation modelling internal and surface gravity waves are analysed using modulation theory. In contrast to previous studies on obliquely interacting soli
We theoretically describe the quasi one-dimensional transverse spreading of a light pulse propagating in a nonlinear optical material in the presence of a uniform background light intensity. For short propagation distances the pulse can be described
Surface and interfacial weakly-nonlinear ring waves in a two-layer fluid are modelled numerically, within the framework of the recently derived 2+1-dimensional cKdV-type equation. In a case study, we consider concentric waves from a localised initial