ﻻ يوجد ملخص باللغة العربية
Surface and interfacial weakly-nonlinear ring waves in a two-layer fluid are modelled numerically, within the framework of the recently derived 2+1-dimensional cKdV-type equation. In a case study, we consider concentric waves from a localised initial condition and waves in a 2D version of the dam-break problem, as well as discussing the effect of a piecewise-constant shear flow. The modelling shows, in particular, the formation of 2D dispersive shock waves (DSWs) and oscillatory wave trains. The surface and interfacial DSWs generated in our numerical experiments look distinctively different.
We theoretically describe the quasi one-dimensional transverse spreading of a light pulse propagating in a nonlinear optical material in the presence of a uniform background light intensity. For short propagation distances the pulse can be described
When a $(1+1)$-dimensional nonlinear PDE in real function $eta(x,t)$ admits localized traveling solutions we can consider $L$ to be the average width of the envelope, $A$ the average value of the amplitude of the envelope, and $V$ the group velocity
The driven, cylindrical, free interface between two miscible, Stokes fluids with high viscosity contrast have been shown to exhibit dispersive hydrodynamics. A hallmark feature of dispersive hydrodynamic media is the dispersive resolution of wavebrea
We perform one of the first studies into the nonlinear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) su
We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave often referred to as the shock wave refraction. The refraction of a one-dimensional dispersi