ﻻ يوجد ملخص باللغة العربية
Domain generalizable (DG) person re-identification (ReID) is a challenging problem because we cannot access any unseen target domain data during training. Almost all the existing DG ReID methods follow the same pipeline where they use a hybrid dataset from multiple source domains for training, and then directly apply the trained model to the unseen target domains for testing. These methods often neglect individual source domains discriminative characteristics and their relevances w.r.t. the unseen target domains, though both of which can be leveraged to help the models generalization. To handle the above two issues, we propose a novel method called the relevance-aware mixture of experts (RaMoE), using an effective voting-based mixture mechanism to dynamically leverage source domains diverse characteristics to improve the models generalization. Specifically, we propose a decorrelation loss to make the source domain networks (experts) keep the diversity and discriminability of individual domains characteristics. Besides, we design a voting network to adaptively integrate all the experts features into the more generalizable aggregated features with domain relevance. Considering the target domains invisibility during training, we propose a novel learning-to-learn algorithm combined with our relation alignment loss to update the voting network. Extensive experiments demonstrate that our proposed RaMoE outperforms the state-of-the-art methods.
Existing person re-identification (re-id) methods are stuck when deployed to a new unseen scenario despite the success in cross-camera person matching. Recent efforts have been substantially devoted to domain adaptive person re-id where extensive unl
Existing person re-identification methods often have low generalizability, which is mostly due to the limited availability of large-scale labeled training data. However, labeling large-scale training data is very expensive and time-consuming. To addr
Although existing person re-identification (Re-ID) methods have shown impressive accuracy, most of them usually suffer from poor generalization on unseen target domain. Thus, generalizable person Re-ID has recently drawn increasing attention, which t
Domain generalization in person re-identification is a highly important meaningful and practical task in which a model trained with data from several source domains is expected to generalize well to unseen target domains. Domain adversarial learning
Although great progress in supervised person re-identification (Re-ID) has been made recently, due to the viewpoint variation of a person, Re-ID remains a massive visual challenge. Most existing viewpoint-based person Re-ID methods project images fro