ﻻ يوجد ملخص باللغة العربية
Population synthesis studies of binary black-hole mergers often lack robust black-hole spin estimates as they cannot accurately follow tidal spin-up during the late black-hole-Wolf-Rayet evolutionary phase. We provide an analytical approximation of the dimensionless second-born black-hole spin given the binary orbital period and Wolf-Rayet stellar mass at helium depletion or carbon depletion. These approximations are obtained from fitting a sample of around $10^5$ detailed MESA simulations that follow the evolution and spin up of close black-hole--Wolf-Rayet systems with metallicities in the range $[10^{-4},1.5Z_odot]$. Following the potential spin up of the Wolf-Rayet progenitor, the second-born black-hole spin is calculated using up-to-date core collapse prescriptions that account for any potential disk formation in the collapsing Wolf-Rayet star. The fits for second-born black hole spin provided in this work can be readily applied to any astrophysical modeling that relies on rapid population synthesis, and will be useful for the interpretation of gravitational-wave sources using such models.
The recently discovered burst of gravitational waves GW150914 provides a good new chance to verify the current view on the evolution of close binary stars. Modern population synthesis codes help to study this evolution from two main sequence stars up
In this paper we propose the model that the coalescence of primordial black holes (PBHs) binaries with equal mass $M sim 10^{28}$g can emit luminous gigahertz (GHz) radio transient, which may be candidate sources for the observed fast radio bursts (F
The transformation of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is revisited. In contrast to the previous calculations of the similar effect, we
Pulsar Timing Arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here we show that the detection of gravitational radiation from individually resolvable super-massive black hole binary systems can yield direct
The LIGO/Virgo gravitational-wave (GW) interferometers have to-date detected ten merging black hole (BH) binaries, some with masses considerably larger than had been anticipated. Stellar-mass BH binaries at the high end of the observed mass range (wi