ﻻ يوجد ملخص باللغة العربية
We present statistical analysis of a fluence limited sample of over 1100 giant pulses from the Crab pulsar, with fluence > 130 Jy ms at ~1330 MHz. These were detected in ~260 hours of observation with the National Centre for Radio Astrophysics (NCRA)-15m radio telescope. We find that the pulse energy distribution follows a power law with index $alphaapprox$-3 at least up to a fluence of ~5 Jy s. The power law index agrees well with that found for lower energy pulses in the range 3-30 Jy ms. The fluence distribution of the Crab pulsar hence appears to follow a single power law over ~3 orders of magnitude in fluence. We do not see any evidence for the flattening at high fluences reported by earlier studies. We also find that at these fluence levels, the rate of giant-pulse emission varies by as much as a factor of ~5 on time-scales of a few days, although the power law index of the pulse-energy distribution remains unchanged. The slope of the fluence distribution for Crab giant pulses is similar to that recently determined for the repeating FRB 121102. We also find an anti-correlation between the pulse fluence and the pulse width, so that more energetic pulses are preferentially shorter.
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our
We present the results of the simultaneous observation of the giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 -- 300 keV band and the Kashima NICT radio observ
We have carried out new, high-frequency, high-time-resolution observations of the Crab pulsar. Combining these with our previous data, we characterize bright single pulses associated with the Main Pulse, both the Low-Frequency and High-Frequency Inte
We have detected occasional, short-lived ``echoes of giant pulses from the Crab pulsar. These echo events remind us of previously reported echoes from this pulsar, but they differ significantly in detail. Our echo events last at most only a few days;