ﻻ يوجد ملخص باللغة العربية
We analyse the Higgs branch of 4d $mathcal{N}=2$ SQCD gauge theories with non-connected gauge groups $widetilde{mathrm{SU}}(N) = mathrm{SU}(N) rtimes_{I,II} mathbb{Z}_2$ whose study was initiated in arXiv:1804.01108. We derive the Hasse diagrams corresponding to the Higgs mechanism using adapted characters for representations of non-connected groups. We propose 3d $mathcal{N}=4$ magnetic quivers for the Higgs branches in the type $I$ discrete gauging case, in the form of recently introduced wreathed quivers, and provide extensive checks by means of Coulomb branch Hilbert series computations.
We study two types of discrete operations on Coulomb branches of $3d$ $mathcal{N}=4$ quiver gauge theories using both abelianisation and the monopole formula. We generalise previous work on discrete quotients of Coulomb branches and introduce novel w
We explore the geometrical structure of Higgs branches of quantum field theories with 8 supercharges in 3, 4, 5 and 6 dimensions. They are symplectic singularities, and as such admit a decomposition (or foliation) into so-called symplectic leaves, wh
A class of 4d $mathcal{N}=3$ SCFTs can be obtained from gauging a discrete subgroup of the global symmetry group of $mathcal{N}=4$ Super Yang-Mills theory. This discrete subgroup contains elements of both the $SU(4)$ R-symmetry group and the $SL(2,ma
This paper tests a conjecture on discrete non-Abelian gauging of 3d $mathcal{N} = 4$ supersymmetric quiver gauge theories. Given a parent quiver with a bouquet of $n$ nodes of rank $1$, invariant under a discrete $S_n$ global symmetry, one can constr
We present a comparative study of inflation in two theories of quadratic gravity with {it gauged} scale symmetry: 1) the original Weyl quadratic gravity and 2) the theory defined by a similar action but in the Palatini approach obtained by replacing