ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-species competition model with chemotaxis: well-posedness, stability and dynamics

88   0   0.0 ( 0 )
 نشر من قبل Yao Yao
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a system of PDEs modeling the population dynamics of two competitive species whose spatial movements are governed by both diffusion and mutually repulsive chemotaxis effects. We prove that solutions to this system are globally well-posed, without any smallness assumptions on the chemotactic coefficients. Moreover, in the weak competition regime, we prove that neither species can be driven to extinction as the time goes to infinity, regardless of how strong the chemotaxis coefficients are. Finally, long-time behaviors of the system are studied both analytically in the weakly nonlinear regime, and numerically in the fully nonlinear regime.

قيم البحث

اقرأ أيضاً

48 - Andrea Giorgini 2020
We study the Abels-Garcke-Grun (AGG) model for a mixture of two viscous incompressible fluids with different densities. The AGG model consists of a Navier-Stokes-Cahn-Hilliard system characterized by a (non-constant) concentration-dependent density a nd an additional flux term due to interface diffusion. In this paper we address the well-posedness problem in the two-dimensional case. We first prove the existence of local strong solutions in general bounded domains. In the space periodic setting we show that the strong solutions exist globally in time. In both cases we prove the uniqueness and the continuous dependence on the initial data of the strong solutions.
In this article, we study the strong well-posedness, stability and optimal control of an incompressible magneto-viscoelastic fluid model in two dimensions. The model consists of an incompressible Navier--Stokes equation for the velocity field, an evo lution equation for the deformation tensor, and a gradient flow equation for the magnetization vector. First, we prove that the model under consideration posseses a global strong solution in a suitable functional framework. Second, we derive stability estimates with respect to an external magnetic field. Based on the stability estimates we use the external magnetic field as the control to minimize a cost functional of tracking-type. We prove existence of an optimal control and derive first-order necessary optimality conditions. Finally, we consider a second optimal control problem, where the external magnetic field, which represents the control, is generated by a finite number of fixed magnetic field coils.
The Cauchy problem of a multi-dimensional ($dgeqslant 2$) compressible viscous liquid-gas two-phase flow model is concerned in this paper. We investigate the global existence and uniqueness of the strong solution for the initial data close to a stabl e equilibrium and the local in time existence and uniqueness of the solution with general initial data in the framework of Besov spaces. A continuation criterion is also obtained for the local solution.
We investigate the spreading properties of a three-species competition-diffusion system, which is non-cooperative. We apply the Hamilton-Jacobi approach, due to Freidlin, Evans and Souganidis, to establish upper and lower estimates of spreading speed of the slowest species, in terms of the spreading speed of two faster species, and show that the estimates are sharp in some situations. The spreading speed will first be characterized as the free boundary point of the viscosity solution for certain variational inequality cast in the space of speeds. Its exact formulas will then be derived by solving the variational inequality explicitly. To the best of our knowledge, this is the first theoretical result on three-species competition system in unbounded domains.
We establish the well-posedness and some quantitative stability of the spatially homogeneous Landau equation for hard potentials, using some specific Monge-Kantorovich cost, assuming only that the initial condition is a probability measure with a fin ite moment of order $p$ for some $p>2$. As a consequence, we extend previous regularity results and show that all non-degenerate measure-valued solutions to the Landau equation, with a finite initial energy, immediately admit analytic densities with finite entropy. Along the way, we prove that the Landau equation instantaneously creates Gaussian moments. We also show existence of weak solutions under the only assumption of finite initial energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا