ﻻ يوجد ملخص باللغة العربية
We establish the well-posedness and some quantitative stability of the spatially homogeneous Landau equation for hard potentials, using some specific Monge-Kantorovich cost, assuming only that the initial condition is a probability measure with a finite moment of order $p$ for some $p>2$. As a consequence, we extend previous regularity results and show that all non-degenerate measure-valued solutions to the Landau equation, with a finite initial energy, immediately admit analytic densities with finite entropy. Along the way, we prove that the Landau equation instantaneously creates Gaussian moments. We also show existence of weak solutions under the only assumption of finite initial energy.
The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L^2 - norm of the Schrodinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffi
We study the Cauchy problem for the half Ginzburg-Landau-Kuramoto (hGLK) equation with the second order elliptic operator having rough coefficients and potential type perturbation. The blow-up of solutions for hGLK equation with non-positive nonlinea
In this paper we consider the hyperbolic-elliptic Ishimori initial-value problem. We prove that such system is locally well-posed for small data in $H^{s}$ level space, for $s> 3/2$. The new ingredient is that we develop the methods of Ionescu and Ke
This article is devoted to review the known results on global well-posedness for the Cauchy problem to the Kirchhoff equation and Kirchhoff systems with small data. Similar results will be obtained for the initial-boundary value problems in exterior
This paper is devoted to proving the almost global solvability of the Cauchy problem for the Kirchhoff equation in the Gevrey space $gamma^s_{eta,L^2}$. Furthermore, similar results are obtained for the initial-boundary value problems in bounded domains and in exterior domains with compact boundary.