ﻻ يوجد ملخص باللغة العربية
Precision magnetometry is fundamental to the development of novel magnetic materials and devices. Recently, the nitrogen-vacancy (NV) center in diamond has emerged as a promising probe for static magnetism in 2D van der Waals materials, capable of quantitative imaging with nanoscale spatial resolution. However, the dynamic character of magnetism, crucial for understanding the magnetic phase transition and achieving technological applications, has rarely been experimentally accessible in single 2D crystals. Here, we coherently control the NV centers spin precession to achieve ultra-sensitive, quantitative ac susceptometry of a 2D ferromagnet. Combining dc hysteresis with ac susceptibility measurements varying temperature, field, and frequency, we illuminate the formation, mobility, and consolidation of magnetic domain walls in few-layer CrBr3. We show that domain wall mobility is enhanced in ultrathin CrBr3, with minimal decrease for excitation frequencies exceeding hundreds of kilohertz, and is influenced by the domain morphology and local pinning of the flake. Our technique extends NV magnetometry to the multi-functional ac and dc magnetic characterization of wide-ranging spintronic materials at the nanoscale.
Spontaneous magnetic order is a routine instance in three-dimensional (3D) materials but for a long time, it remained elusive in the 2D world. Recently, the first examples of (stand-alone) 2D van der Waals (vdW) crystals with magnetic order, either a
We have synthesized unique colloidal nanoplatelets of the ferromagnetic two-dimensional (2D) van der Waals material CrI3 and have characterized these nanoplatelets structurally, magnetically, and by magnetic circular dichroism spectroscopy. The isola
Magnetic skyrmions in 2D chiral magnets are in general stabilized by a combination of Dzyaloshinskii-Moriya interaction and external magnetic field. Here, we show that skyrmions can also be stabilized in twisted moire superlattices in the absence of
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t
We investigated low-frequency current fluctuations, i.e. noise, in the quasi-two-dimensional (2D) van der Waals antiferromagnetic semiconductor FePS3 with the electronic bandgap of 1.5 eV. The electrical and noise characteristics of the p-type, highl