ﻻ يوجد ملخص باللغة العربية
Dark Energy models are numerous and distinguishing between them is becoming difficult. However, using distinct observational probes can ease this quest and gives better assessment to the nature of Dark energy. To this end, the plausibility of neutrino oscillations to be a probe of Dark Energy models is investigated. First, a generalized formalism of neutrino (spinor field) interaction with a classical scalar field in curved space-time is presented. This formalism is then applied to two classes of Dark Energy models in a flat Friedman-Lema^itre-Robertson-Walker metric: a Cosmological Constant and scalar field Dark Energy coupled to neutrinos. By looking at the neutrino oscillation probabilitys evolution with redshift, these models can be distinguished, for certain neutrino and scalar field coupling properties. This evolution could be traced by neutrino flux in future underground, terrestrial or extraterrestrial neutrino telescopes, which would assess probing Dark Energy models with this technique.
A new class of neutrino dark energy models is presented. The new models are characterized by the lack of exotic particles or couplings that violate the standard model symmetry. It is shown that these models lead to several concrete predictions for th
There is a deep connection between cosmology -- the science of the infinitely large --and particle physics -- the science of the infinitely small. This connection is particularly manifest in neutron particle physics. Basic properties of the neutron -
The tension between measurements of the Hubble constant obtained at different redshifts may provide a hint of new physics active in the relatively early universe, around the epoch of matter-radiation equality. A leading paradigm to resolve the tensio
We discuss the interplay between lepton asymmetry L and neutrino oscillations in the early Universe. Neutrino oscillations may suppress or enhance previously existing L. On the other hand L is capable to suppress or enhance neutrino oscillations. The
Astrophysical neutrinos travel long distances from their sources to the Earth traversing dark matter halos of clusters of galaxies and that of our own Milky Way. The interaction of neutrinos with dark matter may affect the flux of neutrinos. The rece