ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining dark matter-neutrino interactions with IceCube-170922A

213   0   0.0 ( 0 )
 نشر من قبل Ki-Young Choi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astrophysical neutrinos travel long distances from their sources to the Earth traversing dark matter halos of clusters of galaxies and that of our own Milky Way. The interaction of neutrinos with dark matter may affect the flux of neutrinos. The recent multi-messenger observation of a high energy neutrino, IceCube-170922A, can give a robust upper bound $sigma /M_{dm} lesssim 5.1times 10^{-23} {rm cm}^2 /$GeV on the interaction between neutrino and dark matter at a neutrino energy of 290 TeV allowing 90% suppression. Combining the constraints from CMB and LSS at different neutrino energies, we can constrain models of dark matter-neutrino interactions.

قيم البحث

اقرأ أيضاً

156 - J.B.G. Alvey , M. Fairbairn 2019
Two of the key unresolved issues facing Standard Model physics are (i) the appearance of a small but non-zero neutrino mass, and, (ii) the missing mass problem in the Universe. The focus of this paper is a previously proposed low energy effective the ory that couples a dark scalar to Standard Model neutrinos. This provides a stable dark matter candidate as well as radiatively generating a neutrino mass. Within this framework we will then construct an entirely new bound from the IceCube-170922A event which takes into account (i) the possible neutrino mass hierarchies, (ii) the effect of cosmological redshift on e.g. the number density of cosmic neutrino background neutrinos, and, (iii) the non-degeneracy of neutrino mass and flavour eigenstates. This builds on work by Kelly and Machado (2018), where the authors placed new constraints on neutrinophilic and axion dark matter models. At low mediator masses, we find an improvement of an order of magnitude on current constraints from kaon decays. The constraint is complimentary (and slightly weaker) than current constraints from Big Bang Nucleosynthesis and the Cosmic Microwave Background. We explore how future higher energy events could improve this bound.
The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via $u_chi =frac{sigma_0}{sigma_{Th}}left(frac{m_chi}{100 text{GeV}}right)^{-1}$, is $u_chileq3.34 cdot 10^{-4}$, arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly higher than previous results for interacting massless neutrinos, due to the correction factor associated with neutrino masses. We find that these interactions significantly relax the lower bounds on the value of $sigma_8$ that is inferred in the context of $Lambda$CDM from the Planck data, leading to agreement within 1-2$sigma$ with weak lensing estimates of $sigma_8$, as those from KiDS-1000. However, the presence of these interactions barely affects the value of the Hubble constant $H_0$.
Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these inte ractions using a diverse suite of data: cosmic microwave background anisotropies, baryon acoustic oscillations, the Lyman-$alpha$ forest, and the abundance of Milky-Way subhalos. We derive constraints using model-independent parameterizations of the dark matter--electron and dark matter--proton interaction cross sections and map these constraints onto concrete dark matter models. Our constraints are complementary to other probes of dark matter interactions with ordinary matter, such as direct detection, big bang nucleosynthesis, various astrophysical systems, and accelerator-based experiments.
Several interesting Dark Matter (DM) models invoke a dark sector leading to two types of relic particles, possibly interacting with each other: non-relativistic DM, and relativistic Dark Radiation (DR). These models have interesting consequences for cosmological observables, and could in principle solve problems like the small-scale cold DM crisis, Hubble tension, and/or low $sigma_8$ value. Their cosmological behaviour is captured by the ETHOS parametrisation, which includes a DR-DM scattering rate scaling like a power-law of the temperature, $T^n$. Scenarios with $n=0$, $2$, or $4$ can easily be realised in concrete dark sector set-ups. Here we update constraints on these three scenarios using recent CMB, BAO, and high-resolution Lyman-$alpha$ data. We introduce a new Lyman-$alpha$ likelihood that is applicable to a wide range of cosmological models with a suppression of the matter power spectrum on small scales. For $n=2$ and $4$, we find that Lyman-$alpha$ data strengthen the CMB+BAO bounds on the DM-DR interaction rate by many orders of magnitude. However, models offering a possible solution to the missing satellite problem are still compatible with our new bounds. For $n=0$, high-resolution Lyman-$alpha$ data bring no stronger constraints on the interaction rate than CMB+BAO data, except for extremely small values of the DR density. Using CMB+BAO data and a theory-motivated prior on the minimal density of DR, we find that the $n=0$ model can reduce the Hubble tension from $4.1sigma$ to $2.7sigma$, while simultaneously accommodating smaller values of the $sigma_8$ and $S_8$ parameters hinted by cosmic shear data.
159 - The IceCube , Fermi-LAT , MAGIC 2018
Individual astrophysical sources previously detected in neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017 we detected a high-ene rgy neutrino, IceCube-170922A, with an energy of approximately 290 TeV. Its arrival direction was consistent with the location of a known gamma-ray blazar TXS 0506+056, observed to be in a flaring state. An extensive multi-wavelength campaign followed, ranging from radio frequencies to gamma-rays. These observations characterize the variability and energetics of the blazar and include the first detection of TXS 0506+056 in very-high-energy gamma-rays. This observation of a neutrino in spatial coincidence with a gamma-ray emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا