ﻻ يوجد ملخص باللغة العربية
The perpendicular shape anisotropy-spin transfer torque-magnetic random access memories (PSASTT-MRAMs) takes advantage of the nanopillar free-layer geometry for securing a good thermal stability factor from the shape anisotropy of the nanomagnet. Such a concept is particularly well-suited for small junctions down to a few nanometers. At such a volume size, the nanopillar can be effectively modeled as a Stoner-Wohlfarth (SW) particle, and the shape anisotropy scales with the spontaneous magnetization by ~ Ms^2. For almost all ferromagnets, Ms is a strong function of temperature, therefore, the temperature-dependent shape anisotropy is an important factor to be considered in any modeling of the temperature-dependent performance of PSA-STT-MRAMs. In this work, we summarize and discuss various possible temperature-dependent contributions to the thermal stability factor and coercivity of the PSA-STT-MRAMs by modeling and comparing different temperature scaling and parameters. We reveal nontrivial corrections to the thermal stability factor by considering both temperature-dependent shape and interfacial anisotropies. The coercivity, blocking temperature, and electrical switching characteristics that resulted from incorporating such a temperature dependence are also discussed, in conjugation with the nanomagnet dimension and coherence volume.
The concept of perpendicular shape anisotropy spin-transfer torque magnetic random-access memory (PSA-STT-MRAM) consists in increasing the storage layer thickness to values comparable to the cell diameter, to induce a perpendicular shape anisotropy i
Interfacial Dzyaloshinskii-Moriya interaction in ferromagnet/heavy metal bilayers is recently of considerable interest as it offers an efficient control of domain walls and the stabilization of magnetic skyrmions. However, its effect on the performan
A new approach to increase the downsize scalability of perpendicular STT-MRAM is presented. It consists in significantly increasing the thickness of the storage layer in out-of-plane magnetized tunnel junctions (pMTJ) as compared to conventional pMTJ
Spin-transfer torques in a nanocontact to an extended magnetic film can create spin waves that condense to form dissipative droplet solitons. Here we report an experimental study of the temperature dependence of the current and applied field threshol
Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken s