ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep regression for uncertainty-aware and interpretable analysis of large-scale body MRI

68   0   0.0 ( 0 )
 نشر من قبل Taro Langner
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale medical studies such as the UK Biobank examine thousands of volunteer participants with medical imaging techniques. Combined with the vast amount of collected metadata, anatomical information from these images has the potential for medical analyses at unprecedented scale. However, their evaluation often requires manual input and long processing times, limiting the amount of reference values for biomarkers and other measurements available for research. Recent approaches with convolutional neural networks for regression can perform these evaluations automatically. On magnetic resonance imaging (MRI) data of more than 40,000 UK Biobank subjects, these systems can estimate human age, body composition and more. This style of analysis is almost entirely data-driven and no manual intervention or guidance with manually segmented ground truth images is required. The networks often closely emulate the reference method that provided their training data and can reach levels of agreement comparable to the expected variability between established medical gold standard techniques. The risk of silent failure can be individually quantified by predictive uncertainty obtained from a mean-variance criterion and ensembling. Saliency analysis furthermore enables an interpretation of the underlying relevant image features and showed that the networks learned to correctly target specific organs, limbs, and regions of interest.



قيم البحث

اقرأ أيضاً

Along with rich health-related metadata, medical images have been acquired for over 40,000 male and female UK Biobank participants, aged 44-82, since 2014. Phenotypes derived from these images, such as measurements of body composition from MRI, can r eveal new links between genetics, cardiovascular disease, and metabolic conditions. In this work, six measurements of body composition and adipose tissues were automatically estimated by image-based, deep regression with ResNet50 neural networks from neck-to-knee body MRI. Despite the potential for high speed and accuracy, these networks produce no output segmentations that could indicate the reliability of individual measurements. The presented experiments therefore examine uncertainty quantification with mean-variance regression and ensembling to estimate individual measurement errors and thereby identify potential outliers, anomalies, and other failure cases automatically. In 10-fold cross-validation on data of about 8,500 subjects, mean-variance regression and ensembling showed complementary benefits, reducing the mean absolute error across all predictions by 12%. Both improved the calibration of uncertainties and their ability to identify high prediction errors. With intra-class correlation coefficients (ICC) above 0.97, all targets except the liver fat content yielded relative measurement errors below 5%. Testing on another 1,000 subjects showed consistent performance, and the method was finally deployed for inference to 30,000 subjects with missing reference values. The results indicate that deep regression ensembles could ultimately provide automated, uncertainty-aware measurements of body composition for more than 120,000 UK Biobank neck-to-knee body MRI that are to be acquired within the coming years.
UK Biobank (UKB) conducts large-scale examinations of more than half a million volunteers, collecting health-related information on genetics, lifestyle, blood biochemistry, and more. Medical imaging of 100,000 subjects, with 70,000 follow-up sessions , enables measurements of organs, muscle, and body composition. With up to 170,000 mounting MR images, various methodologies are accordingly engaged in large-scale image analysis. This work presents an experimental inference engine that can automatically predict a comprehensive profile of subject metadata from UKB neck-to-knee body MRI. It was evaluated in cross-validation for baseline characteristics such as age, height, weight, and sex, but also measurements of body composition, organ volumes, and abstract properties like grip strength, pulse rate, and type 2 diabetic status. It predicted subsequently released test data covering twelve body composition metrics with a 3% median error. The proposed system can automatically analyze one thousand subjects within ten minutes, providing individual confidence intervals. The underlying methodology utilizes convolutional neural networks for image-based mean-variance regression on two-dimensional representations of the MRI data. This work aims to make the proposed system available for free to researchers, who can use it to obtain fast and fully-automated estimates of 72 different measurements immediately upon release of new UKB image data.
In a large-scale medical examination, the UK Biobank study has successfully imaged more than 32,000 volunteer participants with magnetic resonance imaging (MRI). Each scan is linked to extensive metadata, providing a comprehensive medical survey of i maged anatomy and related health states. Despite its potential for research, this vast amount of data presents a challenge to established methods of evaluation, which often rely on manual input. To date, the range of reference values for cardiovascular and metabolic risk factors is therefore incomplete. In this work, neural networks were trained for image-based regression to infer various biological metrics from the neck-to-knee body MRI automatically. The approach requires no manual intervention or direct access to reference segmentations for training. The examined fields span 64 variables derived from anthropometric measurements, dual-energy X-ray absorptiometry (DXA), atlas-based segmentations, and dedicated liver scans. With the ResNet50, the standardized framework achieves a close fit to the target values (median R^2 > 0.97) in cross-validation. Interpretation of aggregated saliency maps suggests that the network correctly targets specific body regions and limbs, and learned to emulate different modalities. On several body composition metrics, the quality of the predictions is within the range of variability observed between established gold standard techniques.
The UK Biobank Imaging Study has acquired medical scans of more than 40,000 volunteer participants. The resulting wealth of anatomical information has been made available for research, together with extensive metadata including measurements of liver fat. These values play an important role in metabolic disease, but are only available for a minority of imaged subjects as their collection requires the careful work of image analysts on dedicated liver MRI. Another UK Biobank protocol is neck-to-knee body MRI for analysis of body composition. The resulting volumes can also quantify fat fractions, even though they were reconstructed with a two- instead of a three-point Dixon technique. In this work, a novel framework for automated inference of liver fat from UK Biobank neck-to-knee body MRI is proposed. A ResNet50 was trained for regression on two-dimensional slices from these scans and the reference values as target, without any need for ground truth segmentations. Once trained, it performs fast, objective, and fully automated predictions that require no manual intervention. On the given data, it closely emulates the reference method, reaching a level of agreement comparable to different gold standard techniques. The network learned to rectify non-linearities in the fat fraction values and identified several outliers in the reference. It outperformed a multi-atlas segmentation baseline and inferred new estimates for all imaged subjects lacking reference values, expanding the total number of liver fat measurements by factor six.
Classification of malignancy for breast cancer and other cancer types is usually tackled as an object detection problem: Individual lesions are first localized and then classified with respect to malignancy. However, the drawback of this approach is that abstract features incorporating several lesions and areas that are not labelled as a lesion but contain global medically relevant information are thus disregarded: especially for dynamic contrast-enhanced breast MRI, criteria such as background parenchymal enhancement and location within the breast are important for diagnosis and cannot be captured by object detection approaches properly. In this work, we propose a 3D CNN and a multi scale curriculum learning strategy to classify malignancy globally based on an MRI of the whole breast. Thus, the global context of the whole breast rather than individual lesions is taken into account. Our proposed approach does not rely on lesion segmentations, which renders the annotation of training data much more effective than in current object detection approaches. Achieving an AUROC of 0.89, we compare the performance of our approach to Mask R-CNN and Retina U-Net as well as a radiologist. Our performance is on par with approaches that, in contrast to our method, rely on pixelwise segmentations of lesions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا