ﻻ يوجد ملخص باللغة العربية
We explore the complexity of nucleolus computation in b-matching games on bipartite graphs. We show that computing the nucleolus of a simple b-matching game is NP-hard even on bipartite graphs of maximum degree 7. We complement this with partial positive results in the special case where b values are bounded by 2. In particular, we describe an efficient algorithm when a constant number of vertices satisfy b(v) = 2 as well as an efficient algorithm for computing the non-simple b-matching nucleolus when b = 2.
Weighted voting games (WVG) are coalitional games in which an agents contribution to a coalition is given by his it weight, and a coalition wins if its total weight meets or exceeds a given quota. These games model decision-making in political bodies
We investigate the problem of equilibrium computation for large $n$-player games. Large games have a Lipschitz-type property that no single players utility is greatly affected by any other individual players actions. In this paper, we mostly focus on
Let $(f,P)$ be an incentive compatible mechanism where $f$ is the social choice function and $P$ is the payment function. In many important settings, $f$ uniquely determines $P$ (up to a constant) and therefore a common approach is to focus on the de
Nearly a decade ago, Azrieli and Shmaya introduced the class of $lambda$-Lipschitz games in which every players payoff function is $lambda$-Lipschitz with respect to the actions of the other players. They showed that such games admit $epsilon$-approx
Similar to the role of Markov decision processes in reinforcement learning, Stochastic Games (SGs) lay the foundation for the study of multi-agent reinforcement learning (MARL) and sequential agent interactions. In this paper, we derive that computin