ترغب بنشر مسار تعليمي؟ اضغط هنا

Urban Analytics: History, Trajectory, and Critique

56   0   0.0 ( 0 )
 نشر من قبل Geoff Boeing
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Urban analytics combines spatial analysis, statistics, computer science, and urban planning to understand and shape city futures. While it promises better policymaking insights, concerns exist around its epistemological scope and impacts on privacy, ethics, and social control. This chapter reflects on the history and trajectory of urban analytics as a scholarly and professional discipline. In particular, it considers the direction in which this field is going and whether it improves our collective and individual welfare. It first introduces early theories, models, and deductive methods from which the field originated before shifting toward induction. It then explores urban network analytics that enrich traditional representations of spatial interaction and structure. Next it discusses urban applications of spatiotemporal big data and machine learning. Finally, it argues that privacy and ethical concerns are too often ignored as ubiquitous monitoring and analytics can empower social repression. It concludes with a call for a more critical urban analytics that recognizes its epistemological limits, emphasizes human dignity, and learns from and supports marginalized communities.



قيم البحث

اقرأ أيضاً

The Journal Impact Factor (JIF) is, by far, the most discussed bibliometric indicator. Since its introduction over 40 years ago, it has had enormous effects on the scientific ecosystem: transforming the publishing industry, shaping hiring practices a nd the allocation of resources, and, as a result, reorienting the research activities and dissemination practices of scholars. Given both the ubiquity and impact of the indicator, the JIF has been widely dissected and debated by scholars of every disciplinary orientation. Drawing on the existing literature as well as on original research, this chapter provides a brief history of the indicator and highlights well-known limitations-such as the asymmetry between the numerator and the denominator, differences across disciplines, the insufficient citation window, and the skewness of the underlying citation distributions. The inflation of the JIF and the weakening predictive power is discussed, as well as the adverse effects on the behaviors of individual actors and the research enterprise. Alternative journal-based indicators are described and the chapter concludes with a call for responsible application and a commentary on future developments in journal indicators.
With the increasing availability of mobility-related data, such as GPS-traces, Web queries and climate conditions, there is a growing demand to utilize this data to better understand and support urban mobility needs. However, data available from the individual actors, such as providers of information, navigation and transportation systems, is mostly restricted to isolated mobility modes, whereas holistic data analytics over integrated data sources is not sufficiently supported. In this paper we present our ongoing research in the context of holistic data analytics to support urban mobility applications in the Data4UrbanMobility (D4UM) project. First, we discuss challenges in urban mobility analytics and present the D4UM platform we are currently developing to facilitate holistic urban data analytics over integrated heterogeneous data sources along with the available data sources. Second, we present the MiC app - a tool we developed to complement available datasets with intermodal mobility data (i.e. data about journeys that involve more than one mode of mobility) using a citizen science approach. Finally, we present selected use cases and discuss our future work.
Cities are complex products of human culture, characterised by a startling diversity of visible traits. Their form is constantly evolving, reflecting changing human needs and local contingencies, manifested in space by many urban patterns. Urban Morp hology laid the foundation for understanding many such patterns, largely relying on qualitative research methods to extract distinct spatial identities of urban areas. However, the manual, labour-intensive and subjective nature of such approaches represents an impediment to the development of a scalable, replicable and data-driven urban form characterisation. Recently, advances in Geographic Data Science and the availability of digital mapping products, open the opportunity to overcome such limitations. And yet, our current capacity to systematically capture the heterogeneity of spatial patterns remains limited in terms of spatial parameters included in the analysis and hardly scalable due to the highly labour-intensive nature of the task. In this paper, we present a method for numerical taxonomy of urban form derived from biological systematics, which allows the rigorous detection and classification of urban types. Initially, we produce a rich numerical characterisation of urban space from minimal data input, minimizing limitations due to inconsistent data quality and availability. These are street network, building footprint, and morphological tessellation, a spatial unit derivative of Voronoi tessellation, obtained from building footprints. Hence, we derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form. After framing and presenting the method, we test it on two cities - Prague and Amsterdam - and discuss potential applications and further developments.
Increasingly available high-frequency location datasets derived from smartphones provide unprecedented insight into trajectories of human mobility. These datasets can play a significant and growing role in informing preparedness and response to natur al disasters. However, limited tools exist to enable rapid analytics using mobility data, and tend not to be tailored specifically for disaster risk management. We present an open-source, Python-based toolkit designed to conduct replicable and scalable post-disaster analytics using GPS location data. Privacy, system capabilities, and potential expansions of textit{Mobilkit} are discussed.
We increasingly live in a data-driven world, with diverse kinds of data distributed across many locations. In some cases, the datasets are collected from multiple locations, such as sensors (e.g., mobile phones and street cameras) spread throughout a geographic region. The data may need to be analyzed close to where they are produced, particularly when the applications require low latency, high, low cost, user privacy, and regulatory constraints. In other cases, large datasets are distributed across public clouds, private clouds, or edge-cloud computing sites with more plentiful computation, storage, bandwidth, and energy resources. Often, some portion of the analysis may take place on the end-host or edge cloud (to respect user privacy and reduce the volume of data) while relying on remote clouds to complete the analysis (to leverage greater computation and storage resources). Wide-area data analytics is any analysis of data that is generated by, or stored at, geographically dispersed entities. Over the past few years, several parts of the computer science research community have started to explore effective ways to analyze data spread over multiple locations. In particular, several areas of systems research - including databases, distributed systems, computer networking, and security and privacy - have delved into these topics. These research subcommunities often focus on different aspects of the problem, consider different motivating applications and use cases, and design and evaluate their solutions differently. To address these challenges the Computing Community Consortium (CCC) convened a 1.5-day workshop focused on wide-area data analytics in October 2019. This report summarizes the challenges discussed and the conclusions generated at the workshop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا