ﻻ يوجد ملخص باللغة العربية
Increasingly available high-frequency location datasets derived from smartphones provide unprecedented insight into trajectories of human mobility. These datasets can play a significant and growing role in informing preparedness and response to natural disasters. However, limited tools exist to enable rapid analytics using mobility data, and tend not to be tailored specifically for disaster risk management. We present an open-source, Python-based toolkit designed to conduct replicable and scalable post-disaster analytics using GPS location data. Privacy, system capabilities, and potential expansions of textit{Mobilkit} are discussed.
With the increasing availability of mobility-related data, such as GPS-traces, Web queries and climate conditions, there is a growing demand to utilize this data to better understand and support urban mobility needs. However, data available from the
We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of h
In the global move toward urbanization, making sure the people remaining in rural areas are not left behind in terms of development and policy considerations is a priority for governments worldwide. However, it is increasingly challenging to track im
Unprecedented human mobility has driven the rapid urbanization around the world. In China, the fraction of population dwelling in cities increased from 17.9% to 52.6% between 1978 and 2012. Such large-scale migration poses challenges for policymakers
The non-pharmaceutical interventions (NPIs), aimed at reducing the diffusion of the COVID-19 pandemic, has dramatically influenced our behaviour in everyday life. In this work, we study how individuals adapted their daily movements and person-to-pers