ترغب بنشر مسار تعليمي؟ اضغط هنا

Mobilkit: A Python Toolkit for Urban Resilience and Disaster Risk Management Analytics using High Frequency Human Mobility Data

122   0   0.0 ( 0 )
 نشر من قبل Enrico Ubaldi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Increasingly available high-frequency location datasets derived from smartphones provide unprecedented insight into trajectories of human mobility. These datasets can play a significant and growing role in informing preparedness and response to natural disasters. However, limited tools exist to enable rapid analytics using mobility data, and tend not to be tailored specifically for disaster risk management. We present an open-source, Python-based toolkit designed to conduct replicable and scalable post-disaster analytics using GPS location data. Privacy, system capabilities, and potential expansions of textit{Mobilkit} are discussed.



قيم البحث

اقرأ أيضاً

With the increasing availability of mobility-related data, such as GPS-traces, Web queries and climate conditions, there is a growing demand to utilize this data to better understand and support urban mobility needs. However, data available from the individual actors, such as providers of information, navigation and transportation systems, is mostly restricted to isolated mobility modes, whereas holistic data analytics over integrated data sources is not sufficiently supported. In this paper we present our ongoing research in the context of holistic data analytics to support urban mobility applications in the Data4UrbanMobility (D4UM) project. First, we discuss challenges in urban mobility analytics and present the D4UM platform we are currently developing to facilitate holistic urban data analytics over integrated heterogeneous data sources along with the available data sources. Second, we present the MiC app - a tool we developed to complement available datasets with intermodal mobility data (i.e. data about journeys that involve more than one mode of mobility) using a citizen science approach. Finally, we present selected use cases and discuss our future work.
We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of h uman mobility, it is possible to assign location to WiFi access points based on a very small number of GPS samples and then use these access points as location beacons. Using just one GPS observation per day per person allows us to estimate the location of, and subsequently use, WiFi access points to account for 80% of mobility across a population. These results reveal a great opportunity for using ubiquitous WiFi routers for high-resolution outdoor positioning, but also significant privacy implications of such side-channel location tracking.
In the global move toward urbanization, making sure the people remaining in rural areas are not left behind in terms of development and policy considerations is a priority for governments worldwide. However, it is increasingly challenging to track im portant statistics concerning this sparse, geographically dispersed population, resulting in a lack of reliable, up-to-date data. In this study, we examine the usefulness of the Facebook Advertising platform, which offers a digital census of over two billions of its users, in measuring potential rural-urban inequalities. We focus on Italy, a country where about 30% of the population lives in rural areas. First, we show that the population statistics that Facebook produces suffer from instability across time and incomplete coverage of sparsely populated municipalities. To overcome such limitation, we propose an alternative methodology for estimating Facebook Ads audiences that nearly triples the coverage of the rural municipalities from 19% to 55% and makes feasible fine-grained sub-population analysis. Using official national census data, we evaluate our approach and confirm known significant urban-rural divides in terms of educational attainment and income. Extending the analysis to Facebook-specific user interests and behaviors, we provide further insights on the divide, for instance, finding that rural areas show a higher interest in gambling. Notably, we find that the most predictive features of income in rural areas differ from those for urban centres, suggesting researchers need to consider a broader range of attributes when examining rural wellbeing. The findings of this study illustrate the necessity of improving existing tools and methodologies to include under-represented populations in digital demographic studies -- the failure to do so could result in misleading observations, conclusions, and most importantly, policies.
Unprecedented human mobility has driven the rapid urbanization around the world. In China, the fraction of population dwelling in cities increased from 17.9% to 52.6% between 1978 and 2012. Such large-scale migration poses challenges for policymakers and important questions for researchers. To investigate the process of migrant integration, we employ a one-month complete dataset of telecommunication metadata in Shanghai with 54 million users and 698 million call logs. We find systematic differences between locals and migrants in their mobile communication networks and geographical locations. For instance, migrants have more diverse contacts and move around the city with a larger radius than locals after they settle down. By distinguishing new migrants (who recently moved to Shanghai) from settled migrants (who have been in Shanghai for a while), we demonstrate the integration process of new migrants in their first three weeks. Moreover, we formulate classification problems to predict whether a person is a migrant. Our classifier is able to achieve an F1-score of 0.82 when distinguishing settled migrants from locals, but it remains challenging to identify new migrants because of class imbalance. This classification setup holds promise for identifying new migrants who will successfully integrate into locals (new migrants that misclassified as locals).
The non-pharmaceutical interventions (NPIs), aimed at reducing the diffusion of the COVID-19 pandemic, has dramatically influenced our behaviour in everyday life. In this work, we study how individuals adapted their daily movements and person-to-pers on contact patterns over time in response to the COVID-19 pandemic and the NPIs. We leverage longitudinal GPS mobility data of hundreds of thousands of anonymous individuals in four US states and empirically show the dramatic disruption in peoples life. We find that local interventions did not just impact the number of visits to different venues but also how people experience them. Individuals spend less time in venues, preferring simpler and more predictable routines and reducing person-to-person contact activities. Moreover, we show that the stringency of interventions alone does explain the number and duration of visits to venues: individual patterns of visits seem to be influenced by the local severity of the pandemic and a risk adaptation factor, which increases the peoples mobility regardless of the stringency of interventions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا