ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Estimation of Sparse Precision Matrix using Adaptive Weighted Graphical Lasso Approach

97   0   0.0 ( 0 )
 نشر من قبل Xinwei Deng
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Estimation of a precision matrix (i.e., inverse covariance matrix) is widely used to exploit conditional independence among continuous variables. The influence of abnormal observations is exacerbated in a high dimensional setting as the dimensionality increases. In this work, we propose robust estimation of the inverse covariance matrix based on an $l_1$ regularized objective function with a weighted sample covariance matrix. The robustness of the proposed objective function can be justified by a nonparametric technique of the integrated squared error criterion. To address the non-convexity of the objective function, we develop an efficient algorithm in a similar spirit of majorization-minimization. Asymptotic consistency of the proposed estimator is also established. The performance of the proposed method is compared with several existing approaches via numerical simulations. We further demonstrate the merits of the proposed method with application in genetic network inference.



قيم البحث

اقرأ أيضاً

Inverse probability weighted estimators are the oldest and potentially most commonly used class of procedures for the estimation of causal effects. By adjusting for selection biases via a weighting mechanism, these procedures estimate an effect of in terest by constructing a pseudo-population in which selection biases are eliminated. Despite their ease of use, these estimators require the correct specification of a model for the weighting mechanism, are known to be inefficient, and suffer from the curse of dimensionality. We propose a class of nonparametric inverse probability weighted estimators in which the weighting mechanism is estimated via undersmoothing of the highly adaptive lasso, a nonparametric regression function proven to converge at $n^{-1/3}$-rate to the true weighting mechanism. We demonstrate that our estimators are asymptotically linear with variance converging to the nonparametric efficiency bound. Unlike doubly robust estimators, our procedures require neither derivation of the efficient influence function nor specification of the conditional outcome model. Our theoretical developments have broad implications for the construction of efficient inverse probability weighted estimators in large statistical models and a variety of problem settings. We assess the practical performance of our estimators in simulation studies and demonstrate use of our proposed methodology with data from a large-scale epidemiologic study.
The article considers the problem of estimating a high-dimensional sparse parameter in the presence of side information that encodes the sparsity structure. We develop a general framework that involves first using an auxiliary sequence to capture the side information, and then incorporating the auxiliary sequence in inference to reduce the estimation risk. The proposed method, which carries out adaptive SURE-thresholding using side information (ASUS), is shown to have robust performance and enjoy optimality properties. We develop new theories to characterize regimes in which ASUS far outperforms competitive shrinkage estimators, and establish precise conditions under which ASUS is asymptotically optimal. Simulation studies are conducted to show that ASUS substantially improves the performance of existing methods in many settings. The methodology is applied for analysis of data from single cell virology studies and microarray time course experiments.
We propose a novel approach to estimating the precision matrix of multivariate Gaussian data that relies on decomposing them into a low-rank and a diagonal component. Such decompositions are very popular for modeling large covariance matrices as they admit a latent factor based representation that allows easy inference. The same is not true for precision matrices, due to the lack of computationally convenient representation, which restricts the use to low to moderate dimensional problems. We address this remarkable gap in the literature by introducing a novel latent variable representation for such decomposition for precision matrices as well. The construction leads to an efficient Gibbs sampler that scales very well to high-dimensional problems far beyond the limits of the current state-of-the-art. The ability to efficiently explore the full posterior space allows the model uncertainty to be easily assessed. The decomposition also crucially allows us to adapt sparsity inducing priors to shrink the insignificant entries of the precision matrix toward zero, making the approach adaptable to high-dimensional small-sample-size sparse settings. Exact zeros in the matrix encoding the underlying conditional independence graph are then determined via a novel posterior false discovery rate control procedure. We evaluate the methods empirical performance through synthetic experiments and illustrate its practical utility in data sets from two different application domains.
291 - Yunbo Ouyang , Feng Liang 2017
A nonparametric Bayes approach is proposed for the problem of estimating a sparse sequence based on Gaussian random variables. We adopt the popular two-group prior with one component being a point mass at zero, and the other component being a mixture of Gaussian distributions. Although the Gaussian family has been shown to be suboptimal for this problem, we find that Gaussian mixtures, with a proper choice on the means and mixing weights, have the desired asymptotic behavior, e.g., the corresponding posterior concentrates on balls with the desired minimax rate. To achieve computation efficiency, we propose to obtain the posterior distribution using a deterministic variational algorithm. Empirical studies on several benchmark data sets demonstrate the superior performance of the proposed algorithm compared to other alternatives.
Many Machine Learning algorithms are formulated as regularized optimization problems, but their performance hinges on a regularization parameter that needs to be calibrated to each application at hand. In this paper, we propose a general calibration scheme for regularized optimization problems and apply it to the graphical lasso, which is a method for Gaussian graphical modeling. The scheme is equipped with theoretical guarantees and motivates a thresholding pipeline that can improve graph recovery. Moreover, requiring at most one line search over the regularization path, the calibration scheme is computationally more efficient than competing schemes that are based on resampling. Finally, we show in simulations that our approach can improve on the graph recovery of other approaches considerably.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا