ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Link and AUV-aided Energy-Efficient Underwater Emergency Response

43   0   0.0 ( 0 )
 نشر من قبل Zhengrui Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Zhengrui Huang




اسأل ChatGPT حول البحث

The recent development of wireless communication has provided many promising solutions to emergency response. To effectively realize the energy-efficient underwater emergency response and adequately harness merits of different underwater communication links (UCL), this article proposes an underwater emergency communication network (UECN) aided by multiple UCLs and autonomous underwater vehicles (AUV) to collect underwater emergency data. Specifically, we first select the optimal emergency response mode (ERM) for each underwater sensor node (USN) with the help of greedy searching and reinforcement learning (RL), and the isolated USNs (IUSN) can be found out. Second, based on the distribution of IUSNs, we dispatch AUVs to assist IUSNs in underwater communication by jointly solving the optimal AUV position and velocity, which can dramatically shorten the amount of time for data collection and motion. Finally, the best tradeoff between response efficiency and energy consumption is achieved by multiobjective optimization, where the amount of time for emergency response and the total energy consumption are simultaneously minimized, subject to a given set of transmit power, signal-to-interference-plus-noise ratio (SINR), outage probability, and energy constraints. Simulation results show that the proposed system significantly improves the response efficiency and overcomes the limitations of existing works, which makes contributions to emergency decision-making.



قيم البحث

اقرأ أيضاً

76 - Zhengrui Huang 2021
Considering the energy-efficient emergency response, subject to a given set of constraints on emergency communication networks (ECN), this article proposes a hybrid device-to-device (D2D) and device-to-vehicle (D2V) network for collecting and transmi tting emergency information. First, we establish the D2D network from the perspective of complex networks by jointly determining the optimal network partition (ONP) and the temporary data caching centers (TDCC), and thus emergency data can be forwarded and cached in TDCCs. Second, based on the distribution of TDCCs, the D2V network is established by unmanned aerial vehicles (UAV)-based waypoint and motion planning, which saves the time for wireless transmission and aerial moving. Finally, the amount of time for emergency response and the total energy consumption are simultaneously minimized by a multiobjective evolutionary algorithm based on decomposition (MOEA/D), subject to a given set of minimum signal-to-interference-plus-noise ratio (SINR), number of UAVs, transmit power, and energy constraints. Simulation results show that the proposed method significantly improves response efficiency and reasonably controls the energy, thus overcoming limitations of existing ECNs. Therefore, this network effectively solves the key problem in the rescue system and makes great contributions to post-disaster decision-making.
The AUV three-dimension path planning in complex turbulent underwater environment is investigated in this research, in which static current map data and uncertain static-moving time variant obstacles are taken into account. Robustness of AUVs path pl anning to this strong variability is known as a complex NP-hard problem and is considered a critical issue to ensure vehicles safe deployment. Efficient evolutionary techniques have substantial potential of handling NP hard complexity of path planning problem as more powerful and fast algorithms among other approaches for mentioned problem. For the purpose of this research Differential Evolution (DE) technique is conducted to solve the AUV path planning problem in a realistic underwater environment. The path planners designed in this paper are capable of extracting feasible areas of a real map to determine the allowed spaces for deployment, where coastal area, islands, static/dynamic obstacles and ocean current is taken into account and provides the efficient path with a small computation time. The results obtained from analyze of experimental demonstrate the inherent robustness and drastic efficiency of the proposed scheme in enhancement of the vehicles path planning capability in coping undesired current, using useful current flow, and avoid colliding collision boundaries in a real-time manner. The proposed approach is also flexible and strictly respects to vehicles kinematic constraints resisting current instabilities.
521 - Fabien Tarissan 2009
Complex networks are at the core of an intense research activity. However, in most cases, intricate and costly measurement procedures are needed to explore their structure. In some cases, these measurements rely on link queries: given two nodes, it i s possible to test the existence of a link between them. These tests may be costly, and thus minimizing their number while maximizing the number of discovered links is a key issue. This paper studies this problem: we observe that properties classically observed on real-world complex networks give hints for their efficient measurement; we derive simple principles and several measurement strategies based on this, and experimentally evaluate their efficiency on real-world cases. In order to do so, we introduce methods to evaluate the efficiency of strategies. We also explore the bias that different measurement strategies may induce.
423 - N. Javaid , A. BiBi , A. Javaid 2013
In this paper, we propose a new Quality Link Metric (QLM), ``Inverse Expected Transmission Count (InvETX) in Optimized Link State Routing (OLSR) protocol. Then we compare performance of three existing QLMs which are based on loss probability measurem ents; Expected Transmission Count (ETX), Minimum Delay (MD), Minimum Loss (ML) in Static Wireless Multi-hop Networks (SWMhNs). A novel contribution of this paper is enhancement in conventional OLSR to achieve high efficiency in terms of optimized routing load and routing latency. For this purpose, first we present a mathematical framework, and then to validate this frame work, we select three performance parameters to simulate default and enhanc
We introduce group-to-group anycast (g2g-anycast), a network design problem of substantial practical importance and considerable generality. Given a collection of groups and requirements for directed connectivity from source groups to destination gro ups, the solution network must contain, for each requirement, an omni-directional down-link broadcast, centered at any node of the source group, called the ball; the ball must contain some node from the destination group in the requirement and all such destination nodes in the ball must aggregate into a tree directed towards the source, called the funnel-tree. The solution network is a collection of balls along with the funnel-trees they contain. g2g-anycast models DBS (Digital Broadcast Satellite), Cable TV systems and drone swarms. It generalizes several well known network design problems including minimum energy unicast, multicast, broadcast, Steiner-tree, Steiner-forest and Group-Steiner tree. Our main achievement is an $O(log^4 n)$ approximation, counterbalanced by an $log^{(2-epsilon)}n$ hardness of approximation, for general weights. Given the applicability to wireless communication, we present a scalable and easily implemented $O(log n)$ approximation algorithm, Cover-and-Grow for fixed-dimensional Euclidean space with path-loss exponent at least 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا