ﻻ يوجد ملخص باللغة العربية
Rapidly spinning, deformed neutron stars have long been considered potential gravitational-wave emitters. However, so far only upper limits on the size of the involved quadrupole deformations have been obtained. For this reason, it is pertinent to ask how large a mountain can be before the neutron star crust fractures. This is the question we consider in this paper, which describes how mountains can be calculated in relativistic gravity. Formally, this is a perturbative calculation that requires a fiducial force to source the mountain. Therefore, we consider three simple examples and increase their deforming amplitudes until the crust yields. We demonstrate how the derived mountains depend on the equation of state by considering a range of models obtained from chiral effective field theory. We find that the largest mountains depend sensitively on both the mechanism that sources them and the nuclear-matter equation of state.
As the era of gravitational-wave astronomy has well and truly begun, gravitational radiation from rotating neutron stars remains elusive. Rapidly spinning neutron stars are the main targets for continuous-wave searches since, according to general rel
Finite size effects in a neutron star merger are manifested, at leading order, through the tidal deformabilities (Lambdas) of the stars. If strong first-order phase transitions do not exist within neutron stars, both neutron stars are described by th
Although the main features of the evolution of binary neutron star systems are now well established, many details are still subject to debate, especially regarding the post-merger phase. In particular, the lifetime of the hyper-massive neutron stars
The discovery of a radioactively powered kilonova associated with the binary neutron star merger GW170817 was the first - and still only - confirmed electromagnetic counterpart to a gravitational-wave event. However, observations of late-time electro