ترغب بنشر مسار تعليمي؟ اضغط هنا

Average Curvature FISTA for Nonconvex Smooth Composite Optimization Problems

71   0   0.0 ( 0 )
 نشر من قبل Jiaming Liang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A previous authors paper introduces an accelerated composite gradient (ACG) variant, namely AC-ACG, for solving nonconvex smooth composite optimization (N-SCO) problems. In contrast to other ACG variants, AC-ACG estimates the local upper curvature of the N-SCO problem by using the average of the observed upper-Lipschitz curvatures obtained during the previous iterations, and uses this estimation and two composite resolvent evaluations to compute the next iterate. This paper presents an alternative FISTA-type ACG variant, namely AC-FISTA, which has the following additional features: i) it performs an average of one composite resolvent evaluation per iteration; and ii) it estimates the local upper curvature by using the average of the previously observed upper (instead of upper-Lipschitz) curvatures. These two properties acting together yield a practical AC-FISTA variant which substantially outperforms earlier ACG variants, including the AC-ACG variants discussed in the aforementioned authors paper.



قيم البحث

اقرأ أيضاً

Many large-scale optimization problems can be expressed as composite optimization models. Accelerated first-order methods such as the fast iterative shrinkage-thresholding algorithm (FISTA) have proven effective for numerous large composite models. I n this paper, we present a new variation of FISTA, to be called C-FISTA, which obtains global linear convergence for a broader class of composite models than many of the latest FISTA variants. We demonstrate the versatility and effectiveness of C-FISTA by showing C-FISTA outperforms current first-order solvers on both group Lasso and group logistic regression models. Furthermore, we utilize Fenchel duality to prove C-FISTA provides global linear convergence for a large class of convex models without the loss of global linear convergence.
While many distributed optimization algorithms have been proposed for solving smooth or convex problems over the networks, few of them can handle non-convex and non-smooth problems. Based on a proximal primal-dual approach, this paper presents a new (stochastic) distributed algorithm with Nesterov momentum for accelerated optimization of non-convex and non-smooth problems. Theoretically, we show that the proposed algorithm can achieve an $epsilon$-stationary solution under a constant step size with $mathcal{O}(1/epsilon^2)$ computation complexity and $mathcal{O}(1/epsilon)$ communication complexity. When compared to the existing gradient tracking based methods, the proposed algorithm has the same order of computation complexity but lower order of communication complexity. To the best of our knowledge, the presented result is the first stochastic algorithm with the $mathcal{O}(1/epsilon)$ communication complexity for non-convex and non-smooth problems. Numerical experiments for a distributed non-convex regression problem and a deep neural network based classification problem are presented to illustrate the effectiveness of the proposed algorithms.
166 - Yangyang Xu 2020
Stochastic gradient methods (SGMs) have been extensively used for solving stochastic problems or large-scale machine learning problems. Recent works employ various techniques to improve the convergence rate of SGMs for both convex and nonconvex cases . Most of them require a large number of samples in some or all iterations of the improved SGMs. In this paper, we propose a new SGM, named PStorm, for solving nonconvex nonsmooth stochastic problems. With a momentum-based variance reduction technique, PStorm can achieve the optimal complexity result $O(varepsilon^{-3})$ to produce a stochastic $varepsilon$-stationary solution, if a mean-squared smoothness condition holds and $Theta(varepsilon^{-1})$ samples are available for the initial update. Different from existing optimal methods, PStorm can still achieve a near-optimal complexity result $tilde{O}(varepsilon^{-3})$ by using only one or $O(1)$ samples in every update. With this property, PStorm can be applied to online learning problems that favor real-time decisions based on one or $O(1)$ new observations. In addition, for large-scale machine learning problems, PStorm can generalize better by small-batch training than other optimal methods that require large-batch training and the vanilla SGM, as we demonstrate on training a sparse fully-connected neural network and a sparse convolutional neural network.
We propose an efficient algorithm for finding first-order Nash equilibria in min-max problems of the form $min_{x in X}max_{yin Y} F(x,y)$, where the objective function is smooth in both variables and concave with respect to $y$; the sets $X$ and $Y$ are convex and projection-friendly, and $Y$ is compact. Our goal is to find an $(varepsilon_x,varepsilon_y)$-first-order Nash equilibrium with respect to a stationarity criterion that is stronger than the commonly used proximal gradient norm. The proposed approach is fairly simple: we perform approximate proximal-point iterations on the primal function, with inexact oracle provided by Nesterovs algorithm run on the regularized function $F(x_t,cdot)$, $x_t$ being the current primal iterate. The resulting iteration complexity is $O(varepsilon_x{}^{-2} varepsilon_y{}^{-1/2})$ up to a logarithmic factor. As a byproduct, the choice $varepsilon_y = O(varepsilon_x{}^2)$ allows for the $O(varepsilon_x{}^{-3})$ complexity of finding an $varepsilon_x$-stationary point for the standard Moreau envelope of the primal function. Moreover, when the objective is strongly concave with respect to $y$, the complexity estimate for our algorithm improves to $O(varepsilon_x{}^{-2}{kappa_y}^{1/2})$ up to a logarithmic factor, where $kappa_y$ is the condition number appropriately adjusted for coupling. In both scenarios, the complexity estimates are the best known so far, and are only known for the (weaker) proximal gradient norm criterion. Meanwhile, our approach is user-friendly: (i) the algorithm is built upon running a variant of Nesterovs accelerated algorithm as subroutine and avoids extragradient steps; (ii) the convergence analysis recycles the well-known results on accelerated methods with inexact oracle. Finally, we extend the approach to non-Euclidean proximal geometries.
Nonconvex minimax problems appear frequently in emerging machine learning applications, such as generative adversarial networks and adversarial learning. Simple algorithms such as the gradient descent ascent (GDA) are the common practice for solving these nonconvex games and receive lots of empirical success. Yet, it is known that these vanilla GDA algorithms with constant step size can potentially diverge even in the convex setting. In this work, we show that for a subclass of nonconvex-nonconcave objectives satisfying a so-called two-sided Polyak-{L}ojasiewicz inequality, the alternating gradient descent ascent (AGDA) algorithm converges globally at a linear rate and the stochastic AGDA achieves a sublinear rate. We further develop a variance reduced algorithm that attains a provably faster rate than AGDA when the problem has the finite-sum structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا