ترغب بنشر مسار تعليمي؟ اضغط هنا

BWCP: Probabilistic Learning-to-Prune Channels for ConvNets via Batch Whitening

67   0   0.0 ( 0 )
 نشر من قبل Wenqi Shao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents a probabilistic channel pruning method to accelerate Convolutional Neural Networks (CNNs). Previous pruning methods often zero out unimportant channels in training in a deterministic manner, which reduces CNNs learning capacity and results in suboptimal performance. To address this problem, we develop a probability-based pruning algorithm, called batch whitening channel pruning (BWCP), which can stochastically discard unimportant channels by modeling the probability of a channel being activated. BWCP has several merits. (1) It simultaneously trains and prunes CNNs from scratch in a probabilistic way, exploring larger network space than deterministic methods. (2) BWCP is empowered by the proposed batch whitening tool, which is able to empirically and theoretically increase the activation probability of useful channels while keeping unimportant channels unchanged without adding any extra parameters and computational cost in inference. (3) Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet with various network architectures show that BWCP outperforms its counterparts by achieving better accuracy given limited computational budgets. For example, ResNet50 pruned by BWCP has only 0.70% Top-1 accuracy drop on ImageNet, while reducing 43.1% FLOPs of the plain ResNet50.



قيم البحث

اقرأ أيضاً

Batch Normalization (BN) is a popular technique for training Deep Neural Networks (DNNs). BN uses scaling and shifting to normalize activations of mini-batches to accelerate convergence and improve generalization. The recently proposed Iterative Norm alization (IterNorm) method improves these properties by whitening the activations iteratively using Newtons method. However, since Newtons method initializes the whitening matrix independently at each training step, no information is shared between consecutive steps. In this work, instead of exact computation of whitening matrix at each time step, we estimate it gradually during training in an online fashion, using our proposed Stochastic Whitening Batch Normalization (SWBN) algorithm. We show that while SWBN improves the convergence rate and generalization of DNNs, its computational overhead is less than that of IterNorm. Due to the high efficiency of the proposed method, it can be easily employed in most DNN architectures with a large number of layers. We provide comprehensive experiments and comparisons between BN, IterNorm, and SWBN layers to demonstrate the effectiveness of the proposed technique in conventional (many-shot) image classification and few-shot classification tasks.
The success of machine learning applications often needs a large quantity of data. Recently, federated learning (FL) is attracting increasing attention due to the demand for data privacy and security, especially in the medical field. However, the per formance of existing FL approaches often deteriorates when there exist domain shifts among clients, and few previous works focus on personalization in healthcare. In this article, we propose FedHealth 2, an extension of FedHealth cite{chen2020fedhealth} to tackle domain shifts and get personalized models for local clients. FedHealth 2 obtains the client similarities via a pretrained model, and then it averages all weighted models with preserving local batch normalization. Wearable activity recognition and COVID-19 auxiliary diagnosis experiments have evaluated that FedHealth 2 can achieve better accuracy (10%+ improvement for activity recognition) and personalized healthcare without compromising privacy and security.
It is common to encounter situations where one must solve a sequence of similar computational problems. Running a standard algorithm with worst-case runtime guarantees on each instance will fail to take advantage of valuable structure shared across t he problem instances. For example, when a commuter drives from work to home, there are typically only a handful of routes that will ever be the shortest path. A naive algorithm that does not exploit this common structure may spend most of its time checking roads that will never be in the shortest path. More generally, we can often ignore large swaths of the search space that will likely never contain an optimal solution. We present an algorithm that learns to maximally prune the search space on repeated computations, thereby reducing runtime while provably outputting the correct solution each period with high probability. Our algorithm employs a simple explore-exploit technique resembling those used in online algorithms, though our setting is quite different. We prove that, with respect to our model of pruning search spaces, our approach is optimal up to constant factors. Finally, we illustrate the applicability of our model and algorithm to three classic problems: shortest-path routing, string search, and linear programming. We present experiments confirming that our simple algorithm is effective at significantly reducing the runtime of solving repeated computations.
We accelerate deep reinforcement learning-based training in visually complex 3D environments by two orders of magnitude over prior work, realizing end-to-end training speeds of over 19,000 frames of experience per second on a single GPU and up to 72, 000 frames per second on a single eight-GPU machine. The key idea of our approach is to design a 3D renderer and embodied navigation simulator around the principle of batch simulation: accepting and executing large batches of requests simultaneously. Beyond exposing large amounts of work at once, batch simulation allows implementations to amortize in-memory storage of scene assets, rendering work, data loading, and synchronization costs across many simulation requests, dramatically improving the number of simulated agents per GPU and overall simulation throughput. To balance DNN inference and training costs with faster simulation, we also build a computationally efficient policy DNN that maintains high task performance, and modify training algorithms to maintain sample efficiency when training with large mini-batches. By combining batch simulation and DNN performance optimizations, we demonstrate that PointGoal navigation agents can be trained in complex 3D environments on a single GPU in 1.5 days to 97% of the accuracy of agents trained on a prior state-of-the-art system using a 64-GPU cluster over three days. We provide open-source reference implementations of our batch 3D renderer and simulator to facilitate incorporation of these ideas into RL systems.
Large-batch training has become a commonly used technique when training neural networks with a large number of GPU/TPU processors. As batch size increases, stochastic optimizers tend to converge to sharp local minima, leading to degraded test perform ance. Current methods usually use extensive data augmentation to increase the batch size, but we found the performance gain with data augmentation decreases as batch size increases, and data augmentation will become insufficient after certain point. In this paper, we propose to use adversarial learning to increase the batch size in large-batch training. Despite being a natural choice for smoothing the decision surface and biasing towards a flat region, adversarial learning has not been successfully applied in large-batch training since it requires at least two sequential gradient computations at each step, which will at least double the running time compared with vanilla training even with a large number of processors. To overcome this issue, we propose a novel Concurrent Adversarial Learning (ConAdv) method that decouple the sequential gradient computations in adversarial learning by utilizing staled parameters. Experimental results demonstrate that ConAdv can successfully increase the batch size on both ResNet-50 and EfficientNet training on ImageNet while maintaining high accuracy. In particular, we show ConAdv along can achieve 75.3% top-1 accuracy on ImageNet ResNet-50 training with 96K batch size, and the accuracy can be further improved to 76.2% when combining ConAdv with data augmentation. This is the first work successfully scales ResNet-50 training batch size to 96K.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا