ترغب بنشر مسار تعليمي؟ اضغط هنا

The essential role of magnetic frustration in the phase diagrams of doped cobaltites

89   0   0.0 ( 0 )
 نشر من قبل Peter P. Orth
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Doped perovskite cobaltites (e.g., La$_{1-x}$Sr$_x$CoO$_3$) have been extensively studied for their spin-state physics, electronic inhomogeneity, and insulator-metal transitions. Ferromagnetically-interacting spin-state polarons emerge at low $x$ in the phase diagram of these compounds, eventually yielding long-range ferromagnetism. The onset of long-range ferromagnetism ($x approx 0.18$) is substantially delayed relative to polaron percolation ($x approx 0.05$), however, generating a troubling inconsistency. Here, Monte-Carlo simulations of a disordered classical spin model are used to establish that previously ignored magnetic frustration is responsible for this effect, enabling faithful reproduction of the magnetic phase diagram.



قيم البحث

اقرأ أيضاً

106 - Peter Horsch 2020
We explore the competiton of doped holes and defects that leads to the loss of orbital order in vanadate perovskites. In compounds such as La$_{1-{sf x}}$Ca$_{,sf x}$VO$_3$ spin and orbital order result from super-exchange interactions described by a n extended three-orbital degenerate Hubbard-Hund model for the vanadium $t_{2g}$ electrons. Long-range Coulomb potentials of charged Ca$^{2+}$ defects and $e$-$e$ interactions control the emergence of defect states inside the Mott gap. The quadrupolar components of the Coulomb fields of doped holes induce anisotropic orbital rotations of degenerate orbitals. These rotations modify the spin-orbital polaron clouds and compete with orbital rotations induced by defects. Both mechanisms lead to a mixing of orbitals, and cause the suppression of the asymmetry of kinetic energy in the $C$-type magnetic phase. We find that the gradual decline of orbital order with doping, a characteristic feature of the vanadates, however, has its origin not predominantly in the charge carriers, but in the off-diagonal couplings of orbital rotations induced by the charges of the doped ions.
Controlled movement of nano-scale stable magnetic objects has been proposed as the foundation for a new generation of magnetic storage devices. Magnetic skyrmions, vortex-like spin textures stabilized by their topology are particularly promising cand idates for this technology. Their nanometric size and ability to be displaced in response to an electrical current density several orders of magnitude lower than required to induce motion of magnetic domain walls suggest their potential for high-density memory devices that can be operated at low power. However, to achieve this, skyrmion movement needs to be controlled, where a key question concerns the coupling of skyrmions with the underlying atomic lattice and disorder (pinning). Here, we use Resonant Ultrasound Spectroscopy (RUS), a probe highly sensitive to changes in the elastic properties, to shed new light on skyrmion elasticity and depinning in the archetypal skyrmion material MnSi. In MnSi, skyrmions form a lattice that leads to pronounced changes in the elastic properties of the atomic lattice as a result of magneto-crystalline coupling. Without an applied current, the shear and compressional moduli of the underlying crystal lattice exhibit an abrupt change in the field-temperature range where skyrmions form. For current densities exceeding $j_c^*$ the changes of elastic properties vanish, signaling the decoupling of skyrmion and atomic lattices. Interestingly, $j_c^*$, which we identify as the onset of skyrmion depinning, is about 20 times smaller than $j_c$ previously measured via non-linear Hall effect. Our results suggest the presence of a previously-undetected intermediate dynamic regime possibly dominated by skyrmion-creep motion with important consequences for potential applications.
Molecular electronic devices are the upmost destiny of the miniaturization trend of electronic components. Although not yet reproducible on large scale, molecular devices are since recently subject of intense studies both experimentally and theoretic ally, which agree in pointing out the extreme sensitivity of such devices on the nature and quality of the contacts. This chapter intends to provide a general theoretical framework for modelling electronic transport at the molecular scale by describing the implementation of a hybrid method based on Green function theory and density functional algorithms. In order to show the presence of contact-dependent features in the molecular conductance, we discuss three archetypal molecular devices, which are intended to focus on the importance of the different sub-parts of a molecular two-terminal setup.
We report neutron scattering, magnetic susceptibility and Monte Carlo theoretical analysis to verify the short range nature of the magnetic structure and spin-spin correlations in a Yb$_3$Ga$_5$O$_{12}$ single crystal. The quantum spin state of Yb$^{ 3+}$ in Yb$_3$Ga$_5$O$_{12}$ is verified. The quantum spins organise into a short ranged emergent director state for T $<$ 0.4 K derived from anisotropy and near neighbour exchange. We derive the magnitude of the near neighbour exchange interactions $0.6; {rm K} < J_1 < 0.7; {rm K}, J_2 = 0.12$~K and the magnitude of the dipolar exchange interaction, $D$, in the range $0.18 < D < 0.21$ K. Certain aspects of the broad experimental dataset can be modelled using a $J_1D$ model with ferromagnetic near neighbour spin-spin correlations while other aspects of the data can be accurately reproduced using a $J_1J_2D$ model with antiferromagnetic near neighbour spin-spin correlation. As such, although we do not quantify all the relevant exchange interactions we nevertheless provide a strong basis for the understanding of the complex Hamiltonian required to fully describe the magnetic state of Yb$_3$Ga$_5$O$_{12}$.
Using muon spin spectroscopy we have found that, for both Na$_x$CoO$_2$ (0.6 $leq x leq$ 0.9) and 3- and 4-layer cobaltites, a common low temperature magnetic state (which in some cases is manifest as an incommensurate spin density wave) forms in the CoO$_2$ planes. Here we summarize those results and report a dome-shaped relation between the transition temperature into the low-$T$ magnetic state and the composition $x$ for Na$_x$CoO$_2$ and/or the high-temperature asymptotic limit of thermopower in the more complex 3- and 4-layer cobaltites. This behavior is explained using the Hubbard model on two-dimensional triangular lattice in the CoO$_2$ plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا