ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-scale Radio and X-ray Structure of the High-redshift Quasar PMN J0909+0354

291   0   0.0 ( 0 )
 نشر من قبل Krisztina Perger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high-redshift quasar PMN J0909+0354 ($z=3.288$) is known to have a pc-scale compact jet structure, based on global 5-GHz very long baseline interferometry (VLBI) observations performed in 1992. Its kpc-scale structure was studied with the Karl G. Jansky Very Large Array (VLA) in the radio and the Chandra space telescope in X-rays. Apart from the north-northwestern jet component seen in both the VLA and Chandra images at $2.3$ separation from the core, there is another X-ray feature at $6.48$ in the northeastern (NE) direction. To uncover more details and possibly structural changes in the inner jet, we conducted new observations at 5 GHz using the European VLBI Network (EVN) in 2019. These data confirm the northward direction of the one-sided inner jet already suspected from the 1992 observations. A compact core and multiple jet components were identified that can be traced up to $sim0.25$ kpc projected distance towards the north, while the structure becomes more and more diffuse. A comparison with arcsec-resolution imaging with the VLA shows that the radio jet bends by $sim30^circ$ between the two scales. The direction of the pc-scale jet as well as the faint optical counterpart found for the newly-detected X-ray point source (NE) favors the nature of the latter as a background or foreground object in the field of view. However, the extended ($sim160$ kpc) emission around the positions of the quasar core and NE detected by the Wide-field Infrared Survey Explorer (WISE) in the mid-infrared might suggest physical interaction of the two objects.



قيم البحث

اقرأ أيضاً

We present the first results from a new, deep (200ks) Chandra observation of the X-ray luminous galaxy cluster surrounding the powerful (L ~10^47 erg/s), high-redshift (z=1.067), compact-steep-spectrum radio-loud quasar 3C186. The diffuse X-ray emiss ion from the cluster has a roughly ellipsoidal shape and extends out to radii of at least ~60 arcsec (~500 kpc). The centroid of the diffuse X-ray emission is offset by 0.68(+/-0.11) arcsec (5.5+/-0.9 kpc) from the position of the quasar. We measure a cluster mass within the radius at which the mean enclosed density is 2500 times the critical density, r_2500=283(+18/-13)kpc, of 1.02 (+0.21/-0.14)x10^14 M_sun. The gas mass fraction within this radius is f_gas=0.129(+0.015/-0.016). This value is consistent with measurements at lower redshifts and implies minimal evolution in the f_gas(z) relation for hot, massive clusters at 0<z<1.1. The measured metal abundance of 0.42(+0.08/-0.07) Solar is consistent with the abundance observed in other massive, high redshift clusters. The spatially-resolved temperature profile for the cluster shows a drop in temperature, from kT~8 keV to kT~3 keV, in its central regions that is characteristic of cooling core clusters. This is the first spectroscopic identification of a cooling core cluster at z>1. We measure cooling times for the X-ray emitting gas at radii of 50 kpc and 25 kpc of 1.7(+/-0.2)x10^9 years and 7.5(+/-2.6)x 10^8 years, as well as a nominal cooling rate (in the absence of heating) of 400(+/-190)M_sun/year within the central 100 kpc. In principle, the cooling gas can supply enough fuel to support the growth of the supermassive black hole and to power the luminous quasar. The radiative power of the quasar exceeds by a factor of 10 the kinematic power of the central radio source, suggesting that radiative heating may be important at intermittent intervals in cluster cores.
We report spectral, imaging, and variability results from four new XMM-Newton observations and two new Chandra observations of high-redshift (z > 4) radio-loud quasars (RLQs). Our targets span lower, and more representative, values of radio loudness than those of past samples of high-redshift RLQs studied in the X-ray regime. Our spectral analyses show power-law X-ray continua with a mean photon index, Gamma =1.74 +/- 0.11, that is consistent with measurements of lower redshift RLQs. These continua are likely dominated by jet-linked X-ray emission, and they follow the expected anti-correlation between photon index and radio loudness. We find no evidence of iron Kalpha ~ emission lines or Compton-reflection continua. Our data also constrain intrinsic X-ray absorption in these RLQs. We find evidence for significant absorption (N_H ~ 10^22 cm^-2) in one RLQ of our sample (SDSS J0011+1446); the incidence of X-ray absorption in our sample appears plausibly consistent with that for high-redshift RLQs that have higher values of radio loudness. In the Chandra observation of PMN J221-2719 we detect apparent extended (~ 14 kpc) X-ray emission that is most likely due to a jet; the X-ray luminosity of this putative jet is ~2% that of the core. The analysis of a 4.9 GHz VLA image of PMN J221-2719 reveals a structure that matches the X-ray extension found in this source. We also find evidence for long-term (450-460 days) X-ray variability by 80-100% in two of our targets.
To date, PMN J2134-0419 (at a redshift z=4.33) is the second most distant quasar known with a milliarcsecond-scale morphology permitting direct estimates of the jet proper motion. Based on two-epoch observations, we constrained its radio jet proper m otion using the very long baseline interferometry (VLBI) technique. The observations were conducted with the European VLBI Network (EVN) at 5 GHz on 1999 November 26 and 2015 October 6. We imaged the central 10-pc scale radio jet emission and modeled its brightness distribution. By identifying a jet component at both epochs separated by 15.86 yr, a proper motion of mu=0.035 +- 0.023 mas/yr is found. It corresponds to an apparent superluminal speed of beta_a=4.1 +- 2.7 c . Relativistic beaming at both epochs suggests that the jet viewing angle with respect to the line of sight is smaller than 20 deg, with a minimum bulk Lorentz factor Gamma=4.3. The small value of the proper motion is in good agreement with the expectations from the cosmological interpretation of the redshift and the current cosmological model. Additionally we analyzed archival Very Large Array observations of J2143-0419 and found indication of a bent jet extending to ~30 kpc.
In order to find clues to the origin of the winged or X-shaped radio galaxies (XRGs) we investigate here the parent galaxies of a large sample of 106 XRGs for optical-radio axes alignment, interstellar medium, black hole mass, and large-scale environ ment. For 41 of the XRGs it was possible to determine the optical major axis and the primary radio axis and the strong tendency for the two axes to be fairly close is confirmed. However, several counter-examples were also found and these could challenge the widely discussed backflow diversion model for the origin of the radio wings. Comparison with a well-defined large sample of normal FR II radio galaxies has revealed that: (i) XRGs possess slightly less massive central black holes than the normal radio galaxies (average masses being log$M_{rm BH} sim$ 8.81 $M_{odot}$ and 9.07 $M_{odot}$, respectively); (ii) a much higher fraction of XRGs ($sim$ 80%) exhibits red mid-IR colors ($W2 - W3 > 1.5$), indicating a population of young stars and/or an enhanced dust mass, probably due to relatively recent galaxy merger(s). A comparison of the large-scale environment (i.e., within $sim$ 1 Mpc) shows that both XRGs and FRII radio galaxies inhabit similarly poor galaxy clustering environments (medium richness being 8.94 and 11.87, respectively). Overall, the origin of XRGs seems difficult to reconcile with a single dominant physical mechanism and competing mechanisms seem prevalent.
Chandra X-ray observations of the high redshift (z =1.532) radio-loud quasar 3C270.1 in 2008 February show the nucleus to have a power-law spectrum, Gamma = 1.66 +/- 0.08, typical of a radio-loud quasar, and a marginally-detected Fe Kalpha emission l ine. The data also reveal extended X-ray emission, about half of which is associated with the radio emission from this source. The southern emission is co-spatial with the radio lobe and peaks at the position of the double radio hotspot. Modeling this hotspot including Spitzer upper limits rules out synchrotron emission from a single power-law population of electrons, favoring inverse-Compton emission with a field of ~11nT, roughly a third of the equipartition value. The northern emission is concentrated close to the location of a 40 deg. bend where the radio jet is presumed to encounter external material. It can be explained by inverse Compton emission involving Cosmic Microwave Background photons with a field of ~3nT, roughly a factor of nine below the equipartition value. The remaining, more diffuse X-ray emission is harder (HR=-0.09 +/- 0.22). With only 22.8+/-5.6 counts, the spectral form cannot be constrained. Assuming thermal emission with a temperature of 4 keV yields an estimate for the luminosity of 1.8E44 erg/s, consistent with the luminosity-temperature relation of lower-redshift clusters. However deeper Chandra X-ray observations are required to delineate the spatial distribution, and better constrain the spectrum of the diffuse emission to verify that we have detected X-ray emission from a high-redshift cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا