ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomaly Detection via Controlled Sensing and Deep Active Inference

119   0   0.0 ( 0 )
 نشر من قبل Geethu Joseph
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we address the anomaly detection problem where the objective is to find the anomalous processes among a given set of processes. To this end, the decision-making agent probes a subset of processes at every time instant and obtains a potentially erroneous estimate of the binary variable which indicates whether or not the corresponding process is anomalous. The agent continues to probe the processes until it obtains a sufficient number of measurements to reliably identify the anomalous processes. In this context, we develop a sequential selection algorithm that decides which processes to be probed at every instant to detect the anomalies with an accuracy exceeding a desired value while minimizing the delay in making the decision and the total number of measurements taken. Our algorithm is based on active inference which is a general framework to make sequential decisions in order to maximize the notion of free energy. We define the free energy using the objectives of the selection policy and implement the active inference framework using a deep neural network approximation. Using numerical experiments, we compare our algorithm with the state-of-the-art method based on deep actor-critic reinforcement learning and demonstrate the superior performance of our algorithm.



قيم البحث

اقرأ أيضاً

We address the problem of sequentially selecting and observing processes from a given set to find the anomalies among them. The decision-maker observes one process at a time and obtains a noisy binary indicator of whether or not the corresponding pro cess is anomalous. In this setting, we develop an anomaly detection algorithm that chooses the process to be observed at a given time instant, decides when to stop taking observations, and makes a decision regarding the anomalous processes. The objective of the detection algorithm is to arrive at a decision with an accuracy exceeding a desired value while minimizing the delay in decision making. Our algorithm relies on a Markov decision process defined using the marginal probability of each process being normal or anomalous, conditioned on the observations. We implement the detection algorithm using the deep actor-critic reinforcement learning framework. Unlike prior work on this topic that has exponential complexity in the number of processes, our algorithm has computational and memory requirements that are both polynomial in the number of processes. We demonstrate the efficacy of our algorithm using numerical experiments by comparing it with the state-of-the-art methods.
Anomaly detection (AD) task corresponds to identifying the true anomalies from a given set of data instances. AD algorithms score the data instances and produce a ranked list of candidate anomalies, which are then analyzed by a human to discover the true anomalies. However, this process can be laborious for the human analyst when the number of false-positives is very high. Therefore, in many real-world AD applications including computer security and fraud prevention, the anomaly detector must be configurable by the human analyst to minimize the effort on false positives. In this paper, we study the problem of active learning to automatically tune ensemble of anomaly detectors to maximize the number of true anomalies discovered. We make four main contributions towards this goal. First, we present an important insight that explains the practical successes of AD ensembles and how ensembles are naturally suited for active learning. Second, we present several algorithms for active learning with tree-based AD ensembles. These algorithms help us to improve the diversity of discovered anomalies, generate rule sets for improved interpretability of anomalous instances, and adapt to streaming data settings in a principled manner. Third, we present a novel algorithm called GLocalized Anomaly Detection (GLAD) for active learning with generic AD ensembles. GLAD allows end-users to retain the use of simple and understandable global anomaly detectors by automatically learning their local relevance to specific data instances using label feedback. Fourth, we present extensive experiments to evaluate our insights and algorithms. Our results show that in addition to discovering significantly more anomalies than state-of-the-art unsupervised baselines, our active learning algorithms under the streaming-data setup are competitive with the batch setup.
The monitoring and management of numerous and diverse time series data at Alibaba Group calls for an effective and scalable time series anomaly detection service. In this paper, we propose RobustTAD, a Robust Time series Anomaly Detection framework b y integrating robust seasonal-trend decomposition and convolutional neural network for time series data. The seasonal-trend decomposition can effectively handle complicated patterns in time series, and meanwhile significantly simplifies the architecture of the neural network, which is an encoder-decoder architecture with skip connections. This architecture can effectively capture the multi-scale information from time series, which is very useful in anomaly detection. Due to the limited labeled data in time series anomaly detection, we systematically investigate data augmentation methods in both time and frequency domains. We also introduce label-based weight and value-based weight in the loss function by utilizing the unbalanced nature of the time series anomaly detection problem. Compared with the widely used forecasting-based anomaly detection algorithms, decomposition-based algorithms, traditional statistical algorithms, as well as recent neural network based algorithms, RobustTAD performs significantly better on public benchmark datasets. It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
117 - Zhi Chen , Jiang Duan , Li Kang 2021
Anomaly detection has wide applications in machine intelligence but is still a difficult unsolved problem. Major challenges include the rarity of labeled anomalies and it is a class highly imbalanced problem. Traditional unsupervised anomaly detector s are suboptimal while supervised models can easily make biased predictions towards normal data. In this paper, we present a new supervised anomaly detector through introducing the novel Ensemble Active Learning Generative Adversarial Network (EAL-GAN). EAL-GAN is a conditional GAN having a unique one generator vs. multiple discriminators architecture where anomaly detection is implemented by an auxiliary classifier of the discriminator. In addition to using the conditional GAN to generate class balanced supplementary training data, an innovative ensemble learning loss function ensuring each discriminator makes up for the deficiencies of the others is designed to overcome the class imbalanced problem, and an active learning algorithm is introduced to significantly reduce the cost of labeling real-world data. We present extensive experimental results to demonstrate that the new anomaly detector consistently outperforms a variety of SOTA methods by significant margins. The codes are available on Github.
We consider the problem of detecting anomalies among a given set of processes using their noisy binary sensor measurements. The noiseless sensor measurement corresponding to a normal process is 0, and the measurement is 1 if the process is anomalous. The decision-making algorithm is assumed to have no knowledge of the number of anomalous processes. The algorithm is allowed to choose a subset of the sensors at each time instant until the confidence level on the decision exceeds the desired value. Our objective is to design a sequential sensor selection policy that dynamically determines which processes to observe at each time and when to terminate the detection algorithm. The selection policy is designed such that the anomalous processes are detected with the desired confidence level while incurring minimum cost which comprises the delay in detection and the cost of sensing. We cast this problem as a sequential hypothesis testing problem within the framework of Markov decision processes, and solve it using the actor-critic deep reinforcement learning algorithm. This deep neural network-based algorithm offers a low complexity solution with good detection accuracy. We also study the effect of statistical dependence between the processes on the algorithm performance. Through numerical experiments, we show that our algorithm is able to adapt to any unknown statistical dependence pattern of the processes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا