ﻻ يوجد ملخص باللغة العربية
We report the dielectric, magnetic, and ultrasonic properties of a one-dimensional organic salt TTF-QBr$_3$I. These indicate that TTF-QBr$_3$I shows a ferroelectric spin-Peierls (FSP) state in a quantum critical regime. In the FSP state, coupling of charge, spin, and lattice leads to emergent excitation of spin solitons as topological defects. Amazingly, the solitons are highly mobile even at low temperatures, although they are normally stationary because of pinning. Our results suggest that strong quantum fluctuations enhanced near a quantum critical point enable soliton motion governed by athermal relaxation. This indicates the realization of quantum topological transport at ambient pressure.
Topological insulators, with metallic boundary states protected against time-reversal-invariant perturbations, are a promising avenue for realizing exotic quantum states of matter including various excitations of collective modes predicted in particl
We report on dc and microwave experiments of the low-dimensional organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$ClO$_4$ along the $a$, $b^{prime}$, and $c^*$ directions. In the normal state of (TMTSF)$_2$PF$_6$ below T=70 K, the dc resistivity f
Quantum matter hosts a large variety of phases, some coexisting, some competing; when two or more orders occur together, they are often entangled and cannot be separated. Dynamical multiferroicity, where fluctuations of electric dipoles lead to magne
The past decade has witnessed the burgeoning discovery of a variety of topological states of matter with distinct nontrivial band topologies. Thus far, most of materials studied possess two-dimensional or three-dimensional electronic structures, with
This chapter is intended as a brief overview of some of the quantum spin liquid phases with unbroken SU(2) spin symmetry available in one dimension. The main characteristics of these phases are discussed by means of the bosonization approach. A speci