ﻻ يوجد ملخص باللغة العربية
Value-at-risk (VaR) is an established measure to assess risks in critical real-world applications with random environmental factors. This paper presents a novel VaR upper confidence bound (V-UCB) algorithm for maximizing the VaR of a black-box objective function with the first no-regret guarantee. To realize this, we first derive a confidence bound of VaR and then prove the existence of values of the environmental random variable (to be selected to achieve no regret) such that the confidence bound of VaR lies within that of the objective function evaluated at such values. Our V-UCB algorithm empirically demonstrates state-of-the-art performance in optimizing synthetic benchmark functions, a portfolio optimization problem, and a simulated robot task.
How can we efficiently gather information to optimize an unknown function, when presented with multiple, mutually dependent information sources with different costs? For example, when optimizing a robotic system, intelligently trading off computer si
Conditional Value at Risk (CVaR) is a family of coherent risk measures which generalize the traditional mathematical expectation. Widely used in mathematical finance, it is garnering increasing interest in machine learning, e.g., as an alternate appr
Refining low-resolution (LR) spatial fields with high-resolution (HR) information is challenging as the diversity of spatial datasets often prevents direct matching of observations. Yet, when LR samples are modeled as aggregate conditional means of H
A new risk measure, the lambda value at risk (Lambda VaR), has been recently proposed from a theoretical point of view as a generalization of the value at risk (VaR). The Lambda VaR appears attractive for its potential ability to solve several proble
In this paper we present an algorithm to compute risk averse policies in Markov Decision Processes (MDP) when the total cost criterion is used together with the average value at risk (AVaR) metric. Risk averse policies are needed when large deviation