ترغب بنشر مسار تعليمي؟ اضغط هنا

Leveraging Non-uniformity in First-order Non-convex Optimization

83   0   0.0 ( 0 )
 نشر من قبل Jincheng Mei
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical global convergence results for first-order methods rely on uniform smoothness and the L{}ojasiewicz inequality. Motivated by properties of objective functions that arise in machine learning, we propose a non-uniform refinement of these notions, leading to emph{Non-uniform Smoothness} (NS) and emph{Non-uniform L{}ojasiewicz inequality} (NL{}). The new definitions inspire new geometry-aware first-order methods that are able to converge to global optimality faster than the classical $Omega(1/t^2)$ lower bounds. To illustrate the power of these geometry-aware methods and their corresponding non-uniform analysis, we consider two important problems in machine learning: policy gradient optimization in reinforcement learning (PG), and generalized linear model training in supervised learning (GLM). For PG, we find that normalizing the gradient ascent method can accelerate convergence to $O(e^{-t})$ while incurring less overhead than existing algorithms. For GLM, we show that geometry-aware normalized gradient descent can also achieve a linear convergence rate, which significantly improves the best known results. We additionally show that the proposed geometry-aware descent methods escape landscape plateaus faster than standard gradient descent. Experimental results are used to illustrate and complement the theoretical findings.



قيم البحث

اقرأ أيضاً

We consider a novel setting of zeroth order non-convex optimization, where in addition to querying the function value at a given point, we can also duel two points and get the point with the larger function value. We refer to this setting as optimiza tion with dueling-choice bandits since both direct queries and duels are available for optimization. We give the COMP-GP-UCB algorithm based on GP-UCB (Srinivas et al., 2009), where instead of directly querying the point with the maximum Upper Confidence Bound (UCB), we perform a constrained optimization and use comparisons to filter out suboptimal points. COMP-GP-UCB comes with theoretical guarantee of $O(frac{Phi}{sqrt{T}})$ on simple regret where $T$ is the number of direct queries and $Phi$ is an improved information gain corresponding to a comparison based constraint set that restricts the search space for the optimum. In contrast, in the direct query only setting, $Phi$ depends on the entire domain. Finally, we present experimental results to show the efficacy of our algorithm.
We design an algorithm which finds an $epsilon$-approximate stationary point (with $| abla F(x)|le epsilon$) using $O(epsilon^{-3})$ stochastic gradient and Hessian-vector products, matching guarantees that were previously available only under a stro nger assumption of access to multiple queries with the same random seed. We prove a lower bound which establishes that this rate is optimal and---surprisingly---that it cannot be improved using stochastic $p$th order methods for any $pge 2$, even when the first $p$ derivatives of the objective are Lipschitz. Together, these results characterize the complexity of non-convex stochastic optimization with second-order methods and beyond. Expanding our scope to the oracle complexity of finding $(epsilon,gamma)$-approximate second-order stationary points, we establish nearly matching upper and lower bounds for stochastic second-order methods. Our lower bounds here are novel even in the noiseless case.
Bandit Convex Optimization (BCO) is a fundamental framework for modeling sequential decision-making with partial information, where the only feedback available to the player is the one-point or two-point function values. In this paper, we investigate BCO in non-stationary environments and choose the emph{dynamic regret} as the performance measure, which is defined as the difference between the cumulative loss incurred by the algorithm and that of any feasible comparator sequence. Let $T$ be the time horizon and $P_T$ be the path-length of the comparator sequence that reflects the non-stationarity of environments. We propose a novel algorithm that achieves $O(T^{3/4}(1+P_T)^{1/2})$ and $O(T^{1/2}(1+P_T)^{1/2})$ dynamic regret respectively for the one-point and two-point feedback models. The latter result is optimal, matching the $Omega(T^{1/2}(1+P_T)^{1/2})$ lower bound established in this paper. Notably, our algorithm is more adaptive to non-stationary environments since it does not require prior knowledge of the path-length $P_T$ ahead of time, which is generally unknown.
Submodular continuous functions are a category of (generally) non-convex/non-concave functions with a wide spectrum of applications. We characterize these functions and demonstrate that they can be maximized efficiently with approximation guarantees. Specifically, i) We introduce the weak DR property that gives a unified characterization of submodularity for all set, integer-lattice and continuous functions; ii) for maximizing monotone DR-submodular continuous functions under general down-closed convex constraints, we propose a Frank-Wolfe variant with $(1-1/e)$ approximation guarantee, and sub-linear convergence rate; iii) for maximizing general non-monotone submodular continuous functions subject to box constraints, we propose a DoubleGreedy algorithm with $1/3$ approximation guarantee. Submodular continuous functions naturally find applications in various real-world settings, including influence and revenue maximization with continuous assignments, sensor energy management, multi-resolution data summarization, facility location, etc. Experimental results show that the proposed algorithms efficiently generate superior solutions compared to baseline algorithms.
In recent years, constrained optimization has become increasingly relevant to the machine learning community, with applications including Neyman-Pearson classification, robust optimization, and fair machine learning. A natural approach to constrained optimization is to optimize the Lagrangian, but this is not guaranteed to work in the non-convex setting, and, if using a first-order method, cannot cope with non-differentiable constraints (e.g. constraints on rates or proportions). The Lagrangian can be interpreted as a two-player game played between a player who seeks to optimize over the model parameters, and a player who wishes to maximize over the Lagrange multipliers. We propose a non-zero-sum variant of the Lagrangian formulation that can cope with non-differentiable--even discontinuous--constraints, which we call the proxy-Lagrangian. The first player minimizes external regret in terms of easy-to-optimize proxy constraints, while the second player enforces the original constraints by minimizing swap regret. For this new formulation, as for the Lagrangian in the non-convex setting, the result is a stochastic classifier. For both the proxy-Lagrangian and Lagrangian formulations, however, we prove that this classifier, instead of having unbounded size, can be taken to be a distribution over no more than m+1 models (where m is the number of constraints). This is a significant improvement in practical terms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا