ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal-insulator-like transition, superconducting dome and topological electronic structure in Ga-doped Re$_{3}$Ge$_{7}$

118   0   0.0 ( 0 )
 نشر من قبل Zhi Ren
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductivity frequently appears by doping compounds that show a collective phase transition. So far, however, this has not been observed in topological materials. Here we report the discovery of superconductivity induced by Ga doping in orthorhombic Re$_{3}$Ge$_{7}$, which undergoes a second-order metal-insulator-like transition at $sim$58 K and is predicted to have a nontrivial band topology. It is found that the substitution of Ga for Ge leads to hole doping in Re$_{3}$Ge$_{7-x}$Ga$_{x}$. As a consequence, the phase transition is gradually suppressed and disappears above $x$ = 0.2. At this $x$ value, superconductivity emerges and $T_{rm c}$ exhibits a dome-like doping dependence with a maximum value of 3.37 K at $x$ = 0.25. First-principles calculations suggest that the phase transition in Re$_{3}$Ge$_{7}$ is associated with an electronic instability driven by Fermi surface nesting and the nontrival band topology is preserved after Ga doping. Our results indicate that Ga-doped Re$_{3}$Ge$_{7}$ provides a rare opportunity to study the interplay between superconductivity and competing electronic states in a topologically nontrivial system.



قيم البحث

اقرأ أيضاً

82 - C. Q. Han , H. Li , W. J. Chen 2015
Using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the atomic and low energy electronic structure of the Sr-doped superconducting topological insulators (SrxBi2Se3) was studied. Scanning tu nneling microscopy shows that most of the Sr atoms are not in the van der Waals gap. After Sr doping, the Fermi level was found to move further upwards when compared with the parent compound Bi2Se3, which is consistent with the low carrier density in this system. The topological surface state was clearly observed, and the position of the Dirac point was determined in all doped samples. The surface state is well separated from the bulk conduction bands in the momentum space. The persistence of separated topological surface state combined with small Fermi energy makes this superconducting material a very promising candidate for the time reversal invariant topological superconductor
145 - L. A. Wray , S. Xu , M. Neupane 2013
Angle resolved photoemission spectroscopy is used to observe changes in the electronic structure of bulk-doped topological insulator Cu$_x$Bi$_2$Se$_3$ as additional copper atoms are deposited onto the cleaved crystal surface. Carrier density and sur face-normal electrical field strength near the crystal surface are estimated to consider the effect of chemical surface gating on atypical superconducting properties associated with topological insulator order, such as the dynamics of theoretically predicted Majorana Fermion vortices.
Dependence of superconducting properties of (Ca,RE)(Fe,TM)As2 [(Ca,RE)112, TM: Co, Ni)] on RE elements (RE = La-Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca,RE)112, whic h is similar to Co-co-doped (Ca,La)112 or (Ca,Pr)112. Tc of Co-co-doped samples decreased from 38 K for RE = La to 29 K for RE = Gd with decreasing ionic radii of RE3+. However, Co-co-doped (Ca,Eu)112 showed exceptionally low Tc = 21 K probably due to the co-existence of Eu3+ and Eu2+ suggested by longer interlayer distance dFe-Fe of (Ca,Eu)112 than other (Ca,RE)112.
We study electronic properties of a superconducting topological insulator whose parent material is a topological insulator. We calculate the temperature dependence of the specific heat and spin susceptibility for four promising superconducting pairin gs proposed by L. Fu and E. Berg (Phys. Rev. Lett. 105, 097001). Since the line shapes of temperature dependence of specific heat are almost identical among three of the four pairings, it is difficult to identify them simply from the specific heat. On the other hand, we obtain wide varieties of the temperature dependence of spin susceptibility for each pairing reflecting the spin structure of Cooper pair. We propose that the pairing symmetry of superconducting topological insulator can be determined from measurement of Knight shift by changing the direction of applied magnetic field.
The recent-discovered Sr$_x$Bi$_2$Se$_3$ superconductor provides an alternative and ideal material base for investigating possible topological superconductivity. Here, we report that in Sr$_{0.065}$Bi$_{2}$Se$_3$, the ambient superconducting phase is gradually depressed upon the application of external pressure. At high pressure, a second superconducting phase emerges at above 6 GPa, with a maximum $T_c$ value of $sim$8.3 K. The joint investigations of the high-pressure synchrotron x-ray diffraction and electrical transport properties reveal that the re-emergence of superconductivity in Sr$_{0.065}$Bi$_{2}$Se$_3$ is closely related to the structural phase transition from ambient rhombohedral phase to high-pressure monoclinic phase around 6 GPa, and further to another high-pressure tetragonal phase above 25 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا