ﻻ يوجد ملخص باللغة العربية
Superconductivity frequently appears by doping compounds that show a collective phase transition. So far, however, this has not been observed in topological materials. Here we report the discovery of superconductivity induced by Ga doping in orthorhombic Re$_{3}$Ge$_{7}$, which undergoes a second-order metal-insulator-like transition at $sim$58 K and is predicted to have a nontrivial band topology. It is found that the substitution of Ga for Ge leads to hole doping in Re$_{3}$Ge$_{7-x}$Ga$_{x}$. As a consequence, the phase transition is gradually suppressed and disappears above $x$ = 0.2. At this $x$ value, superconductivity emerges and $T_{rm c}$ exhibits a dome-like doping dependence with a maximum value of 3.37 K at $x$ = 0.25. First-principles calculations suggest that the phase transition in Re$_{3}$Ge$_{7}$ is associated with an electronic instability driven by Fermi surface nesting and the nontrival band topology is preserved after Ga doping. Our results indicate that Ga-doped Re$_{3}$Ge$_{7}$ provides a rare opportunity to study the interplay between superconductivity and competing electronic states in a topologically nontrivial system.
Using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the atomic and low energy electronic structure of the Sr-doped superconducting topological insulators (SrxBi2Se3) was studied. Scanning tu
Angle resolved photoemission spectroscopy is used to observe changes in the electronic structure of bulk-doped topological insulator Cu$_x$Bi$_2$Se$_3$ as additional copper atoms are deposited onto the cleaved crystal surface. Carrier density and sur
Dependence of superconducting properties of (Ca,RE)(Fe,TM)As2 [(Ca,RE)112, TM: Co, Ni)] on RE elements (RE = La-Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca,RE)112, whic
We study electronic properties of a superconducting topological insulator whose parent material is a topological insulator. We calculate the temperature dependence of the specific heat and spin susceptibility for four promising superconducting pairin
The recent-discovered Sr$_x$Bi$_2$Se$_3$ superconductor provides an alternative and ideal material base for investigating possible topological superconductivity. Here, we report that in Sr$_{0.065}$Bi$_{2}$Se$_3$, the ambient superconducting phase is