ترغب بنشر مسار تعليمي؟ اضغط هنا

High-fidelity Bell-state preparation with $^{40}$Ca$^+$ optical qubits

139   0   0.0 ( 0 )
 نشر من قبل Kenton Brown
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement generation in trapped-ion systems has relied thus far on two distinct but related geometric phase gate techniques: Molmer-Sorensen and light-shift gates. We recently proposed a variant of the light-shift scheme where the qubit levels are separated by an optical frequency [B. C. Sawyer and K. R. Brown, Phys. Rev. A 103, 022427 (2021)]. Here we report an experimental demonstration of this entangling gate using a pair of $^{40}$Ca$^+$ ions in a cryogenic surface-electrode ion trap and a commercial, high-power, 532 nm Nd:YAG laser. Generating a Bell state in 35 $mu$s, we directly measure an infidelity of $6(3) times 10^{-4}$ without subtraction of experimental errors. The 532 nm gate laser wavelength suppresses intrinsic photon scattering error to $sim 1 times 10^{-5}$. This result establishes our scheme as competitive with previously demonstrated entangling gates.

قيم البحث

اقرأ أيضاً

Highly state-selective, weakly dissipative population transfer is used to irreversibly move the population of one ground state qubit level of an atomic ion to an effectively stable excited manifold with high fidelity. Subsequent laser interrogation a ccurately distinguishes these electronic manifolds, and we demonstrate a total qubit state preparation and measurement (SPAM) inaccuracy $epsilon_mathrm{SPAM} < 1.7 times 10^{-4}$ ($-38 mbox{ dB}$), limited by imperfect population transfer between qubit eigenstates. We show experimentally that full transfer would yield an inaccuracy less than $8.0 times 10^{-5}$ ($-41 mbox{ dB}$). The high precision of this method revealed a rare ($approx 10^{-4}$) magnetic dipole decay induced error that we demonstrate can be corrected by driving an additional transition. Since this technique allows fluorescence collection for effectively unlimited periods, high fidelity qubit SPAM is achievable even with limited optical access and low quantum efficiency.
To date, the highest fidelity quantum logic gates between two qubits have been achieved with variations on the geometric-phase gate in trapped ions, with the two leading variants being the Molmer-Sorensen gate and the light-shift (LS) gate. Both of t hese approaches have their respective advantages and challenges. For example, the latter is technically simpler and is natively insensitive to optical phases, but it has not been made to work directly on a clock-state qubit. We present a new technique for implementing the LS gate that combines the best features of these two approaches: By using a small ($sim {rm MHz}$) detuning from a narrow (dipole-forbidden) optical transition, we are able to operate an LS gate directly on hyperfine clock states, achieving gate fidelities of $99.74(4)%$ using modest laser power at visible wavelengths. Current gate infidelities appear to be dominated by technical noise, and theoretical modeling suggests a path towards gate fidelity above $99.99%$.
Individual addressing of qubits is essential for scalable quantum computation. Spatial addressing allows unlimited numbers of qubits to share the same frequency, whilst enabling arbitrary parallel operations. We demonstrate addressing of long-lived $ ^{43}text{Ca}^+$ atomic clock qubits held in separate zones ($960mu$m apart) of a microfabricated surface trap with integrated microwave electrodes. Such zones could form part of a quantum CCD architecture for a large-scale quantum information processor. By coherently cancelling the microwave field in one zone we measure a ratio of Rabi frequencies between addressed and non-addressed qubits of up to 1400, from which we calculate a spin-flip probability on the qubit transition of the non-addressed ion of $1.3times 10^{-6}$. Off-resonant excitation then becomes the dominant error process, at around $5 times 10^{-3}$. It can be prevented either by working at higher magnetic field, or by polarization control of the microwave field. We implement polarization control with error $2 times 10^{-5}$, which would suffice to suppress off-resonant excitation to the $sim 10^{-9}$ level if combined with spatial addressing. Such polarization control could also enable fast microwave operations.
376 - Yuchen Peng , Frank Gaitan 2017
We present an approach to single-shot high-fidelity preparation of an $n$-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produc e single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two qubit Bell state $|beta_{01}rangle = (1/sqrt{2})left[, |01rangle + |10rangle,right]$ with an error probability $epsilonsim 10^{-6}$ ($10^{-5}$) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state $|overline{beta}_{01}rangle$.
Universal control of multiple qubits -- the ability to entangle qubits and to perform arbitrary individual qubit operations -- is a fundamental resource for quantum computation, simulation, and networking. Here, we implement a new laser-free scheme f or universal control of trapped ion qubits based on microwave magnetic fields and radiofrequency magnetic field gradients. We demonstrate high-fidelity entanglement and individual control by creating symmetric and antisymmetric two-qubit maximally entangled states with fidelities in the intervals [0.9983, 1] and [0.9964, 0.9988], respectively, at 68% confidence, corrected for state initialization error. This technique is robust against multiple sources of decoherence, usable with essentially any trapped ion species, and has the potential to perform simultaneous entangling operations on many pairs of ions without increasing control signal power or complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا