ترغب بنشر مسار تعليمي؟ اضغط هنا

High-fidelity laser-free universal control of two trapped ion qubits

189   0   0.0 ( 0 )
 نشر من قبل Raghavendra Srinivas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Universal control of multiple qubits -- the ability to entangle qubits and to perform arbitrary individual qubit operations -- is a fundamental resource for quantum computation, simulation, and networking. Here, we implement a new laser-free scheme for universal control of trapped ion qubits based on microwave magnetic fields and radiofrequency magnetic field gradients. We demonstrate high-fidelity entanglement and individual control by creating symmetric and antisymmetric two-qubit maximally entangled states with fidelities in the intervals [0.9983, 1] and [0.9964, 0.9988], respectively, at 68% confidence, corrected for state initialization error. This technique is robust against multiple sources of decoherence, usable with essentially any trapped ion species, and has the potential to perform simultaneous entangling operations on many pairs of ions without increasing control signal power or complexity.



قيم البحث

اقرأ أيضاً

125 - A. Myerson , D. Szwer , S. Webster 2008
We demonstrate single-shot qubit readout with fidelity sufficient for fault-tolerant quantum computation, for two types of qubit stored in single trapped calcium ions. For an optical qubit stored in the (4S_1/2, 3D_5/2) levels of 40Ca+ we achieve 99. 991(1)% average readout fidelity in one million trials, using time-resolved photon counting. An adaptive measurement technique allows 99.99% fidelity to be reached in 145us average detection time. For a hyperfine qubit stored in the long-lived 4S_1/2 (F=3, F=4) sub-levels of 43Ca+ we propose and implement a simple and robust optical pumping scheme to transfer the hyperfine qubit to the optical qubit, capable of a theoretical fidelity 99.95% in 10us. Experimentally we achieve 99.77(3)% net readout fidelity, inferring at least 99.87(4)% fidelity for the transfer operation.
We report on the implementation of a high fidelity universal gate-set on optical qubits based on trapped $^{88}$Sr$^+$ ions for the purpose of quantum information processing. All coherent operations were performed using a narrow linewidth diode laser . We employed a master-slave configuration for the laser, where an ultra low expansion glass (ULE) Fabry-Perot cavity is used as a stable reference as well as a spectral filter. We characterized the laser spectrum using the ions with a modified Ramsey sequence which eliminated the affect of the magnetic field noise. We demonstrated high fidelity single qubit gates with individual addressing, based on inhomogeneous micromotion, on a two-ion chain as well as the M{o}lmer-S{o}rensen two-qubit entangling gate.
We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequenc y. By transforming into a `bichromatic interaction picture, we show that either ${hat{sigma}_{phi}otimeshat{sigma}_{phi}}$ or ${hat{sigma}_{z}otimeshat{sigma}_{z}}$ geometric phase gates can be performed. The gate basis is determined by selecting the microwave detuning. The driving parameters can be tuned to provide intrinsic dynamical decoupling from qubit frequency fluctuations. The ${hat{sigma}_{z}otimeshat{sigma}_{z}}$ gates can be implemented in a novel manner which eases experimental constraints. We present numerical simulations of gate fidelities assuming realistic parameters.
We demonstrate a simplified method for dissipative generation of an entangled state of two trapped-ion qubits. Our implementation produces its target state faster and with higher fidelity than previous demonstrations of dissipative entanglement gener ation and eliminates the need for auxiliary ions. The entangled singlet state is generated in $sim$7 ms with a fidelity of 0.949(4). The dominant source of infidelity is photon scattering. We discuss this error source and strategies for its mitigation.
We demonstrate laser-driven two-qubit and single-qubit logic gates with fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the approximately 99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed/fidelity trade-off for the two-qubit gate, for gate times between 3.8$mu$s and 520$mu$s, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا