ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing topological phase transitions via quantum reflection in the graphene family materials

67   0   0.0 ( 0 )
 نشر من قبل Patr\\'icia Abrantes
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically investigate the quantum reflection of different atoms by two-dimensional (2D) materials of the graphene family (silicene, germanene, and stanene), subjected to an external electric field and circularly polarized light. By using Lifshitz theory to compute the Casimir-Polder potential, which ensures that our predictions apply to all regimes of atom-2D surface distances, we demonstrate that the quantum reflection probability exhibits distinctive, unambiguous signatures of topological phase transitions that occur in 2D materials. We also show that the quantum reflection probability can be highly tunable by these external agents, depending on the atom-surface combination, reaching a variation of 40% for Rubidium in the presence of a stanene sheet. Our findings attest that not only dispersive forces play a crucial role in quantum reflection, but also that the topological phase transitions of the graphene family materials can be comprehensively and efficiently probed via atom-surface interactions at the nanoscale.



قيم البحث

اقرأ أيضاً

Quantum phase transitions (QPTs) in qubit systems are known to produce singularities in the entanglement, which could in turn be used to probe the QPT. Current proposals to measure the entanglement are challenging however, because of their nonlocal n ature. Here we show that a double quantum dot coupled locally to a spin chain provides an alternative and efficient probe of QPTs. We propose an experiment to observe a QPT in a triple dot, based on the well-known singlet projection technique.
Quantum walks are promising for information processing tasks because on regular graphs they spread quadratically faster than random walks. Static disorder, however, can turn the tables: unlike random walks, quantum walks can suffer Anderson localizat ion, whereby the spread of the walker stays within a finite region even in the infinite time limit. It is therefore important to understand when we can expect a quantum walk to be Anderson localized and when we can expect it to spread to infinity even in the presence of disorder. In this work we analyze the response of a generic one-dimensional quantum walk -- the split-step walk -- to different forms of static disorder. We find that introducing static, symmetry-preserving disorder in the parameters of the walk leads to Anderson localization. In the completely disordered limit, however, a delocalization sets in, and the walk spreads subdiffusively. Using an efficient numerical algorithm, we calculate the bulk topological invariants of the disordered walk, and interpret the disorder-induced Anderson localization and delocalization transitions using these invariants.
Uncertainty relations are studied for a characterization of topological-band insulator transitions in 2D gapped Dirac materials isostructural with graphene. We show that the relative or Kullback-Leibler entropy in position and momentum spaces, and th e standard variance-based uncertainty relation, give sharp signatures of topological phase transitions in these systems.
A number of tools have been developed to detect topological phase transitions in strongly correlated quantum systems. They apply under different conditions, but do not cover the full range of many-body models. It is hence desirable to further expand the toolbox. Here, we propose to use quasiparticle properties to detect quantum phase transitions. The approach is independent from the choice of boundary conditions, and it does not assume a particular lattice structure. The probe is hence suitable for, e.g., fractals and quasicrystals. The method requires that one can reliably create quasiparticles in the considered systems. In the simplest cases, this can be done by a pinning potential, while it is less straightforward in more complicated systems. We apply the method to several rather different examples, including one that cannot be handled by the commonly used probes, and in all the cases we find that the numerical costs are low. This is so, because a simple property, such as the charge of the anyons, is sufficient to detect the phase transition point. For some of the examples, this allows us to study larger systems and/or further parameter values compared to previous studies.
We study the effect of anisotropy (strain) on dynamical gap generation in graphene. We work with a low energy effective theory obtained from a tight-binding Hamiltonian expanded around the Dirac points in momentum space. We use a non-perturbative Sch winger-Dyson approach and calculate a coupled set of five momentum dependent dressing functions. Our results show that the critical coupling depends only weakly on the anisotropy parameter, and increases with greater anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا