ترغب بنشر مسار تعليمي؟ اضغط هنا

Wireless Covert Communications Aided by Distributed Cooperative Jamming over Slow Fading Channels

179   0   0.0 ( 0 )
 نشر من قبل Tong-Xing Zheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study covert communications between {a pair of} legitimate transmitter-receiver against a watchful warden over slow fading channels. There coexist multiple friendly helper nodes who are willing to protect the covert communication from being detected by the warden. We propose an uncoordinated jammer selection scheme where those helpers whose instantaneous channel gains to the legitimate receiver fall below a pre-established selection threshold will be chosen as jammers radiating jamming signals to defeat the warden. By doing so, the detection accuracy of the warden is expected to be severely degraded while the desired covert communication is rarely affected. We then jointly design the optimal selection threshold and message transmission rate for maximizing covert throughput under the premise that the detection error of the warden exceeds a certain level. Numerical results are presented to validate our theoretical analyses. It is shown that the multi-jammer assisted covert communication outperforms the conventional single-jammer method in terms of covert throughput, and the maximal covert throughput improves significantly as the total number of helpers increases, which demonstrates the validity and superiority of our proposed scheme.

قيم البحث

اقرأ أيضاً

The fading wire-tap channel is investigated, where the source-to-destination channel and the source-to-wire-tapper channel are corrupted by multiplicative fading gain coefficients in addition to additive Gaussian noise terms. The channel state inform ation is assumed to be known at both the transmitter and the receiver. The parallel wire-tap channel with independent subchannels is first studied, which serves as an information-theoretic model for the fading wire-tap channel. The secrecy capacity of the parallel wire-tap channel is established. This result is then specialized to give the secrecy capacity of the fading wire-tap channel, which is achieved with the source node dynamically changing the power allocation according to the channel state realization. An optimal source power allocation is obtained to achieve the secrecy capacity.
Covert communications enable a transmitter to send information reliably in the presence of an adversary, who looks to detect whether the transmission took place or not. We consider covert communications over quasi-static block fading channels, where users suffer from channel uncertainty. We investigate the adversary Willies optimal detection performance in two extreme cases, i.e., the case of perfect channel state information (CSI) and the case of channel distribution information (CDI) only. It is shown that in the large detection error regime, Willies detection performances of these two cases are essentially indistinguishable, which implies that the quality of CSI does not help Willie in improving his detection performance. This result enables us to study the covert transmission design without the need to factor in the exact amount of channel uncertainty at Willie. We then obtain the optimal and suboptimal closed-form solution to the covert transmission design. Our result reveals fundamental difference in the design between the case of quasi-static fading channel and the previously studied case of non-fading AWGN channel.
Two mobile users communicate with a central decoder via two base stations. Communication between the mobile users and the base stations takes place over a Gaussian interference channel with constant channel gains or quasi-static fading. Instead, the base stations are connected to the central decoder through orthogonal finite-capacity links, whose connectivity is subject to random fluctuations. There is only receive-side channel state information, and hence the mobile users are unaware of the channel state and of the backhaul connectivity state, while the base stations know the fading coefficients but are uncertain about the backhaul links state. The base stations are oblivious to the mobile users codebooks and employ compress-and-forward to relay information to the central decoder. Upper and lower bounds are derived on average achievable throughput with respect to the prior distribution of the fading coefficients and of the backhaul links states. The lower bounds are obtained by proposing strategies that combine the broadcast coding approach and layered distributed compression techniques. The upper bound is obtained by assuming that all the nodes know the channel state. Numerical results confirm the advantages of the proposed approach with respect to conventional non-robust strategies in both scenarios with and without fading.
84 - Wei Duan , Jinjuan Ju , Qiang Sun 2018
This paper considers the cooperative device-to-device (D2D) systems with non-orthogonal multiple access (NOMA). We assume that the base station (BS) can communicate simultaneously with all users to satisfy the full information transmission. In order to characterize the impact of the weak channel and different decoding schemes, two kinds of decoding strategies are proposed: emph{single signal decoding scheme} and emph{MRC decoding scheme}, respectively. For the emph{single signal decoding scheme}, the users immediately decode the received signals after receptions from the BS. Meanwhile, for the emph{MRC decoding scheme}, instead of decoding, the users will keep the receptions in reserve until the corresponding phase comes and the users jointly decode the received signals by employing maximum ratio combining (MRC). Considering Rayleigh fading channels, the ergodic sum-rate (SR), outage probability and outage capacity of the proposed D2D-NOMA system are analyzed. Moreover, approximate expressions for the ergodic SR are also provided with a negligible performance loss. Numerical results demonstrate that the ergodic SR and outage probability of the proposed D2D-NOMA scheme overwhelm that of the conventional NOMA schemes. Furthermore, it is also revealed that the system performance including the ergodic SR and outage probability are limited by the poor channel condition for both the emph{single signal decoding scheme} and conventional NOMA schemes.
We develop a low-complexity coding scheme to achieve covert communications over binary-input discrete memoryless channels (BI-DMCs). We circumvent the impossibility of covert communication with linear codes by introducing non-linearity through the us e of pulse position modulation (PPM) and multilevel coding (MLC). We show that the MLC-PPM scheme exhibits many appealing properties; in particular, the channel at a given index level remains stationary as the number of level increases, which allows one to use families of channel capacity- and channel resolvability-achieving codes to concretely instantiate the covert communication scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا