ترغب بنشر مسار تعليمي؟ اضغط هنا

Multilevel-Coded Pulse-Position Modulation for Covert Communications over Binary-Input Discrete Memoryless Channels

313   0   0.0 ( 0 )
 نشر من قبل Ishaque Ashar Kadampot
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a low-complexity coding scheme to achieve covert communications over binary-input discrete memoryless channels (BI-DMCs). We circumvent the impossibility of covert communication with linear codes by introducing non-linearity through the use of pulse position modulation (PPM) and multilevel coding (MLC). We show that the MLC-PPM scheme exhibits many appealing properties; in particular, the channel at a given index level remains stationary as the number of level increases, which allows one to use families of channel capacity- and channel resolvability-achieving codes to concretely instantiate the covert communication scheme.



قيم البحث

اقرأ أيضاً

We show that the Extrinsic Information about the coded bits of any good (capacity achieving) code operating over a wide class of discrete memoryless channels (DMC) is zero when channel capacity is below the code rate and positive constant otherwise, that is, the Extrinsic Information Transfer (EXIT) chart is a step function of channel quality, for any capacity achieving code. It follows that, for a common class of iterative receivers where the error correcting decoder must operate at first iteration at rate above capacity (such as in turbo equalization, turbo channel estimation, parallel and serial concatenated coding and the like), classical good codes which achieve capacity over the DMC are not effective and should be replaced by different new ones. Another meaning of the results is that a good code operating at rate above channel capacity falls apart into its individual transmitted symbols in the sense that all the information about a coded transmitted symbol is contained in the corresponding received symbol and no information about it can be inferred from the other received symbols. The binary input additive white Gaussian noise channel is treated in part 1 of this report. Part 2 extends the results to the symmetric binary channel and to the binary erasure channel and provides an heuristic extension to wider class of channel models.
133 - Erdal Arikan 2009
A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity $I(W)$ of any given binary-input discrete memoryless channel (B-DMC) $W$. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is possible to synthesize, out of $N$ independent copies of a given B-DMC $W$, a second set of $N$ binary-input channels ${W_N^{(i)}:1le ile N}$ such that, as $N$ becomes large, the fraction of indices $i$ for which $I(W_N^{(i)})$ is near 1 approaches $I(W)$ and the fraction for which $I(W_N^{(i)})$ is near 0 approaches $1-I(W)$. The polarized channels ${W_N^{(i)}}$ are well-conditioned for channel coding: one need only send data at rate 1 through those with capacity near 1 and at rate 0 through the remaining. Codes constructed on the basis of this idea are called polar codes. The paper proves that, given any B-DMC $W$ with $I(W)>0$ and any target rate $R < I(W)$, there exists a sequence of polar codes ${{mathscr C}_n;nge 1}$ such that ${mathscr C}_n$ has block-length $N=2^n$, rate $ge R$, and probability of block error under successive cancellation decoding bounded as $P_{e}(N,R) le bigoh(N^{-frac14})$ independently of the code rate. This performance is achievable by encoders and decoders with complexity $O(Nlog N)$ for each.
In this paper, we study covert communications between {a pair of} legitimate transmitter-receiver against a watchful warden over slow fading channels. There coexist multiple friendly helper nodes who are willing to protect the covert communication fr om being detected by the warden. We propose an uncoordinated jammer selection scheme where those helpers whose instantaneous channel gains to the legitimate receiver fall below a pre-established selection threshold will be chosen as jammers radiating jamming signals to defeat the warden. By doing so, the detection accuracy of the warden is expected to be severely degraded while the desired covert communication is rarely affected. We then jointly design the optimal selection threshold and message transmission rate for maximizing covert throughput under the premise that the detection error of the warden exceeds a certain level. Numerical results are presented to validate our theoretical analyses. It is shown that the multi-jammer assisted covert communication outperforms the conventional single-jammer method in terms of covert throughput, and the maximal covert throughput improves significantly as the total number of helpers increases, which demonstrates the validity and superiority of our proposed scheme.
A memoryless state-dependent broadcast channel (BC) is considered, where the transmitter wishes to convey two private messages to two receivers while simultaneously estimating the respective states via generalized feedback. The model at hand is motiv ated by a joint radar and communication system where radar and data applications share the same frequency band. For physically degraded BCs with i.i.d. state sequences, we characterize the capacity-distortion tradeoff region. For general BCs, we provide inner and outer bounds on the capacitydistortion region, as well as a sufficient condition when it is equal to the product of the capacity region and the set of achievable distortion. Interestingly, the proposed synergetic design significantly outperforms a conventional approach that splits the resource either for sensing or communication.
The fading wire-tap channel is investigated, where the source-to-destination channel and the source-to-wire-tapper channel are corrupted by multiplicative fading gain coefficients in addition to additive Gaussian noise terms. The channel state inform ation is assumed to be known at both the transmitter and the receiver. The parallel wire-tap channel with independent subchannels is first studied, which serves as an information-theoretic model for the fading wire-tap channel. The secrecy capacity of the parallel wire-tap channel is established. This result is then specialized to give the secrecy capacity of the fading wire-tap channel, which is achieved with the source node dynamically changing the power allocation according to the channel state realization. An optimal source power allocation is obtained to achieve the secrecy capacity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا