ﻻ يوجد ملخص باللغة العربية
Motivation: Protein-ligand affinity prediction is an important part of structure-based drug design. It includes molecular docking and affinity prediction. Although molecular dynamics can predict affinity with high accuracy at present, it is not suitable for large-scale virtual screening. The existing affinity prediction and evaluation functions based on deep learning mostly rely on experimentally-determined conformations. Results: We build a predictive model of protein-ligand affinity through the ResNet neural network with added attention mechanism. The resulting ResAtom-Score model achieves Pearsons correlation coefficient R = 0.833 on the CASF-2016 benchmark test set. At the same time, we evaluated the performance of a variety of existing scoring functions in combination with ResAtom-Score in the absence of experimentally-determined conformations. The results show that the use of {Delta}VinaRF20 in combination with ResAtom-Score can achieve affinity prediction close to scoring functions in the presence of experimentally-determined conformations. These results suggest that ResAtom system may be used for in silico screening of small molecule ligands with target proteins in the future. Availability: https://github.com/wyji001/ResAtom
There is great interest to develop artificial intelligence-based protein-ligand affinity models due to their immense applications in drug discovery. In this paper, PointNet and PointTransformer, two pointwise multi-layer perceptrons have been applied
The cornerstone of computational drug design is the calculation of binding affinity between two biological counterparts, especially a chemical compound, i.e., a ligand, and a protein. Predicting the strength of protein-ligand binding with reasonable
The knowledge of potentially druggable binding sites on proteins is an important preliminary step towards the discovery of novel drugs. The computational prediction of such areas can be boosted by following the recent major advances in the deep learn
Recently exciting progress has been made on protein contact prediction, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. This paper presents a new dee
Protein-RNA interactions are of vital importance to a variety of cellular activities. Both experimental and computational techniques have been developed to study the interactions. Due to the limitation of the previous database, especially the lack of