ﻻ يوجد ملخص باللغة العربية
Monolayers of transition metal dichalcogenides are ideal materials to control both spin and valley degrees of freedom either electrically or optically. Nevertheless, optical excitation mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here we demonstrate a very efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers. We observe that, using a continuous wave laser and appropriate doping and excitation densities, negative trion doublet lines exhibit circular polarization of opposite sign and the photoluminescence intensity of the triplet trion is more than four times larger with circular excitation than with linear excitation. We interpret our results as a consequence of a large dynamic polarization of resident electrons using circular light.
Transition metal dichalcogenide (TMD) moire heterostructures provide an ideal platform to explore the extended Hubbard model1 where long-range Coulomb interactions play a critical role in determining strongly correlated electron states. This has led
Moire superlattices provide a powerful way to engineer properties of electrons and excitons in two-dimensional van der Waals heterostructures. The moire effect can be especially strong for interlayer excitons, where electrons and holes reside in diff
Valleytronic materials, characterized by local extrema (valley) in their bands, and topological insulators have separately attracted great interest recently. However, the interplay between valleytronic and topological properties in one single system,
We report experimental evidences on selective occupation of the degenerate valleys in MoS2 monolayers by circularly polarized optical pumping. Over 30% valley polarization has been observed at K and K valley via the polarization resolved luminescence
We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-