ﻻ يوجد ملخص باللغة العربية
Valleytronic materials, characterized by local extrema (valley) in their bands, and topological insulators have separately attracted great interest recently. However, the interplay between valleytronic and topological properties in one single system, likely to enable important unexplored phenomena and applications, has been largely overlooked so far. Here, by combining a tight-binding model with first-principles calculations, we find the large-band-gap quantum spin Hall effects (QSHEs) and valley Hall effects (VHEs) appear simultaneously in the Bi monolayers decorated with halogen elements, denoted as Bi2XY (X, Y = H, F, Cl, Br, or I). A staggered exchange field is introduced into the Bi2XY monolayers by transition metal atom (Cr, Mo, or W) doping or LaFeO3 magnetic substrates, which together with the strong SOC of Bi atoms generates a time-reversal-symmetry-broken QSHE and a huge valley splitting (up to 513 meV) in the system. With gate control, QSHE and anomalous charge, spin, valley Hall effects can be observed in the single system. These predicted multiple and exotic Hall effects, associated with various degrees of freedom of electrons, could enable applications of the functionalized Bi monolayers in electronics, spintronics, and valleytronics.
2D materials with valley-related multiple Hall effect are both fundamentally intriguing and practically appealing to explore novel phenomena and applications, but have been largely overlooked up to date. Here, using first-principles calculations, we
Monolayers of transition metal dichalcogenides are ideal materials to control both spin and valley degrees of freedom either electrically or optically. Nevertheless, optical excitation mostly generates excitons species with inherently short lifetime
Anomalous valley Hall (AVH) effect is a fundamental transport phenomenon in the field of condensed-matter physics. Usually, the research on AVH effect is mainly focused on 2D lattices with ferromagnetic order. Here, by means of model analysis, we pre
The spin Hall effect (SHE) is the conversion of charge current to spin current, and non-magnetic metals with large SHEs are extremely sought after for spintronic applications, but their rarity has stifled widespread use. Here we predict and explain t
We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-