ﻻ يوجد ملخص باللغة العربية
The line-of-sight peculiar velocities are good indicators of the gravitational fluctuation of the density field. Techniques have been developed to extract cosmological information from the peculiar velocities in order to test the cosmological models. These techniques include measuring cosmic flow, measuring two-point correlation and power spectrum of the peculiar velocity fields, reconstructing the density field using peculiar velocities. However, some measurements from these techniques are biased due to the non-Gaussianity of the estimated peculiar velocities. Therefore, we use the 2MTF survey to explore a power transform that can Gaussianize the estimated peculiar velocities. We find a tight linear relation between the transformation parameters and the measurement errors of log-distance ratio. To show an example for the implement of the Gaussianized peculiar velocities in cosmology, we develop a bulk flow estimator and estimate bulk flow from the Gaussianized peculiar velocities. We use 2MTF mocks to test the algorithm, we find the algorithm yields unbiased measurements. We also find this technique gives smaller measurement errors compared to other techniques. Under the Galactic coordinates, at the depth of $30$ $h^{-1}$ Mpc, we measure a bulk flow of $332pm27$ km s$^{-1}$ in the direction $(l,b)=(293pm 5^{circ}, 13pm 4^{circ})$. The measurement is consistent with the $Lambda$CDM prediction.
The discrepancy between estimates of the Hubble Constant ($H_0$) measured from local ($z lesssim 0.1$) scales and from scales of the sound horizon is a crucial problem in modern cosmology. Peculiar velocities ($v_{pec}$) of standard candle distance i
The line-of-sight peculiar velocities of galaxies contribute to their observed redshifts, breaking the translational invariance of galaxy clustering down to a rotational invariance around the observer. This becomes important when the line-of-sight di
We present an analysis of peculiar velocities and their effect on supernova cosmology. In particular, we study (a) the corrections due to our own motion, (b) the effects of correlations in peculiar velocities induced by large-scale structure, and (c)
We study correlated fluctuations of Type~Ia supernova observables due to peculiar velocities of both the observer and the supernova host galaxies, and their impact on cosmological parameter estimation. We demonstrate using the CosmicFlows-3 dataset t
How do peculiar velocities affect observed voids? To answer this question we use the VIDE toolkit to identify voids in mock galaxy populations embedded within an N-body simulation both with and without peculiar velocities included. We compare the res