ﻻ يوجد ملخص باللغة العربية
The discrepancy between estimates of the Hubble Constant ($H_0$) measured from local ($z lesssim 0.1$) scales and from scales of the sound horizon is a crucial problem in modern cosmology. Peculiar velocities ($v_{pec}$) of standard candle distance indicators can systematically affect local $H_0$ measurements. We here use 2MRS galaxies to measure the local galaxy density field, finding a notable $z$ < 0.05 under-density in the SGC-6dFGS region of 27 $pm$ 2 %. However, no strong evidence for a Local Void pertaining to the full 2MRS sky coverage is found. Galaxy densities are used to measure a density parameter, $Delta phi_{+-}$, which we introduce as a proxy for $v_{pec}$ which quantifies density gradients along a SN line-of-sight. $Delta phi_{+-}$ is found to correlate with local $H_0$ estimates from 88 Pantheon SNeIa (0.02 < $z$ < 0.05). Density structures on scales of $sim$ 50 Mpc are found to correlate strongest with $H_0$ estimates in both the observational data and in mock data from the MDPL2-Galacticus simulation. Using trends of $H_0$ with $Delta phi_{+-}$, we can correct for the effects of density structure on local $H_0$ estimates, even in the presence of biased $v_{pec}$. However, the difference in the inferred $H_0$ estimate with and without the peculiar velocity correction is limited to < 0.1 %. We conclude that accounting for environmentally-induced peculiar velocities of SNIa host galaxies does not resolve the tension between local and CMB-derived $H_0$ estimates.
When measuring the value of the Hubble parameter, $H_0$, it is necessary to know the recession velocity free of the effects of peculiar velocities. In this work, we study different models of peculiar velocity in the local Universe. In particular, we
Type Ia Supernovae (SNe Ia) are widely used to measure the expansion of the Universe. To perform such measurements the luminosity and cosmological redshift ($z$) of the SNe Ia have to be determined. The uncertainty on $z$ includes an unknown peculiar
How do peculiar velocities affect observed voids? To answer this question we use the VIDE toolkit to identify voids in mock galaxy populations embedded within an N-body simulation both with and without peculiar velocities included. We compare the res
We quantify the effect of supernova Type Ia peculiar velocities on the derivation of cosmological parameters. The published distant and local Ia SNe used for the Supernova Legacy Survey first-year cosmology report form the sample for this study. Whil
It is known that the large-scale structure (LSS) mapped by a galaxy redshift survey is subject to distortions by the galaxies peculiar velocities. Besides the signatures generated in common N-point statistics, such as the anisotropy in the galaxy 2-p