ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-power calibration of photonic circuits at cryogenic temperatures

124   0   0.0 ( 0 )
 نشر من قبل Ben Burridge Mr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The continual success of superconducting photon-detection technologies in quantum photonics asserts cryogenic-compatible systems as a cornerstone of full quantum photonic integration. Here, we present a way to reversibly fine-tune the optical properties of individual waveguide structures through local changes to their geometry using solidified xenon. Essentially, we remove the need for additional on-chip calibration elements, effectively zeroing the power consumption tied to reconfigurable elements, with virtually no detriment to photonic device performance. We enable passive circuit tuning in pressure-controlled environments, locally manipulating the cladding thickness over portions of optical waveguides. We realize this in a cryogenic environment, through controlled deposition of xenon gas and precise tuning of its thickness using sublimation, triggered by on-chip resistive heaters. $pi$ phase shifts occur over a calculated length of just $L_{pi}$ = 12.3$pm$0.3 $mu m$. This work paves the way towards the integration of compact, reconfigurable photonic circuits alongside superconducting detectors, devices, or otherwise.

قيم البحث

اقرأ أيضاً

Long-lived, high-frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path towards chip-scale integra tion. Confocal bulk acoustic wave resonators have demonstrated an immense potential to support long-lived phonon modes in crystalline media at cryogenic temperatures. So far, these devices have been macroscopic with cm-scale dimensions. However, as we push these oscillators to high frequencies, we have an opportunity to radically reduce the footprint as a basis for classical and emerging quantum technologies. In this paper, we present novel design principles and simple fabrication techniques to create high performance chip-scale confocal bulk acoustic wave resonators in a wide array of crystalline materials. We tailor the acoustic modes of such resonators to efficiently couple to light, permitting us to perform a non-invasive laser-based phonon spectroscopy. Using this technique, we demonstrate an acoustic $Q$-factor of 28 million (6.5 million) for chip-scale resonators operating at 12.7 GHz (37.8 GHz) in crystalline $z$-cut quartz ($x$-cut silicon) at cryogenic temperatures.
161 - Zejie Yu , Xiang Xi , Jingwen Ma 2019
Waves that are perfectly confined in the continuous spectrum of radiating waves without interaction with them are known as bound states in the continuum (BICs). Despite recent discoveries of BICs in nanophotonics, full routing and control of BICs are yet to be explored. Here, we experimentally demonstrate BICs in a fundamentally new photonic architecture by patterning a low-refractive-index material on a high-refractive-index substrate, where dissipation to the substrate continuum is eliminated by engineering the geometric parameters. Pivotal BIC-based photonic components are demonstrated, including waveguides, microcavities, directional couplers, and modulators. Therefore, this work presents the critical step of photonic integrated circuits in the continuum, and enables the exploration of new single-crystal materials on an integrated photonic platform without the fabrication challenges of patterning the single-crystal materials. The demonstrated lithium niobate platform will facilitate development of functional photonic integrated circuits for optical communications, nonlinear optics at the single photon level as well as scalable photonic quantum information processors.
102 - P. A. t Hart 2021
This work presents a self-heating study of a 40-nm bulk-CMOS technology in the ambient temperature range from 300 K down to 4.2 K. A custom test chip was designed and fabricated for measuring both the temperature rise in the MOSFET channel and in the surrounding silicon substrate, using the gate resistance and silicon diodes as sensors, respectively. Since self-heating depends on factors such as device geometry and power density, the test structure characterized in this work was specifically designed to resemble actual devices used in cryogenic qubit control ICs. Severe self-heating was observed at deep-cryogenic ambient temperatures, resulting in a channel temperature rise exceeding 50 K and having an impact detectable at a distance of up to 30 um from the device. By extracting the thermal resistance from measured data at different temperatures, it was shown that a simple model is able to accurately predict channel temperatures over the full ambient temperature range from deep-cryogenic to room temperature. The results and modeling presented in this work contribute towards the full self-heating-aware IC design-flow required for the reliable design and operation of cryo-CMOS circuits.
56 - S. Bauer , B. Grees , D. Spitzer 2013
In this paper we describe a new variant of null ellipsometry to determine thicknesses and optical properties of thin films on a substrate at cryogenic temperatures. In the PCSA arrangement of ellipsometry the polarizer and the compensator are placed before the substrate and the analyzer after it. Usually, the polarizer and the analyzer are rotated to find the intensity minimum searched for in null ellipsometry. In our variant we rotate the polarizer and the compensator instead, both being placed in the incoming beam before the substrate. Therefore the polarization analysis of the reflected beam can be realized by an analyzer at fixed orientation. We developed this method for investigations of thin cryogenic films inside a vacuum chamber, where the analyzer and detector had to be placed inside the cold shield at a temperature of T approx. 90K close to the substrate. All other optical components were installed at the incoming beam line outside the vacuum chamber, including all components which need to be rotated during the measurements. Our null ellipsometry variant has been tested with condensed krypton films on a highly oriented pyrolytic graphite substrate (HOPG) at a temperature of T approx. 25K. We show that it is possible to determine the indices of refraction of condensed krypton and of the HOPG substrate as well as thickness of krypton films with reasonable accuracy.
Metamaterial photonic integrated circuits with arrays of hybrid graphene-superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device optical responses, such as electromagnetic induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity, by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature (Tc) of Nb. Maximum modulation depths of 57.3 % and 97.61 % are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs and a significant enhancement of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale quantum communication and quantum processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا