ﻻ يوجد ملخص باللغة العربية
In this paper we describe a new variant of null ellipsometry to determine thicknesses and optical properties of thin films on a substrate at cryogenic temperatures. In the PCSA arrangement of ellipsometry the polarizer and the compensator are placed before the substrate and the analyzer after it. Usually, the polarizer and the analyzer are rotated to find the intensity minimum searched for in null ellipsometry. In our variant we rotate the polarizer and the compensator instead, both being placed in the incoming beam before the substrate. Therefore the polarization analysis of the reflected beam can be realized by an analyzer at fixed orientation. We developed this method for investigations of thin cryogenic films inside a vacuum chamber, where the analyzer and detector had to be placed inside the cold shield at a temperature of T approx. 90K close to the substrate. All other optical components were installed at the incoming beam line outside the vacuum chamber, including all components which need to be rotated during the measurements. Our null ellipsometry variant has been tested with condensed krypton films on a highly oriented pyrolytic graphite substrate (HOPG) at a temperature of T approx. 25K. We show that it is possible to determine the indices of refraction of condensed krypton and of the HOPG substrate as well as thickness of krypton films with reasonable accuracy.
The continual success of superconducting photon-detection technologies in quantum photonics asserts cryogenic-compatible systems as a cornerstone of full quantum photonic integration. Here, we present a way to reversibly fine-tune the optical propert
In this paper we describe the technology of building a vacuum-tight high voltage feedthrough which is able to operate at voltages up to 30 kV. The feedthrough has a coaxial structure with a grounded sheath which makes it capable to lead high voltage
Long-lived, high-frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path towards chip-scale integra
This work evaluates the viability of polyimide and parylene-C for passivation of lithium-drifted silicon (Si(Li)) detectors. The passivated Si(Li) detectors will form the particle tracker and X-ray detector of the General Antiparticle Spectrometer (G
A novel polarisation modulation scheme for polarimeters based on Fabry-Perot cavities is presented. The application to the proposed HERA-X experiment aiming to measuring the magnetic birefringence of vacuum with the HERA superconducting magnets is discussed.